6022 lines
234 KiB
Java
Executable File
6022 lines
234 KiB
Java
Executable File
|
||
|
||
|
||
package midpcalc;
|
||
|
||
|
||
|
||
/**
|
||
* <b>Java integer implementation of 63-bit precision floating point.</b>
|
||
* <br><i>Version 1.13</i>
|
||
*
|
||
* <p>Copyright 2003-2009 Roar Lauritzsen <roarl@pvv.org>
|
||
*
|
||
* <blockquote>
|
||
*
|
||
* <p>This library is free software; you can redistribute it and/or modify it
|
||
* under the terms of the GNU General Public License as published by the Free
|
||
* Software Foundation; either version 2 of the License, or (at your option)
|
||
* any later version.
|
||
*
|
||
* <p>This library is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
* for more details.
|
||
*
|
||
* <p>The following link provides a copy of the GNU General Public License:
|
||
* <br> <a
|
||
* href="http://www.gnu.org/licenses/gpl.txt">http://www.gnu.org/licenses/gpl.txt</a>
|
||
* <br>If you are unable to obtain the copy from this address, write to the
|
||
* Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||
* 02111-1307 USA
|
||
*
|
||
* </blockquote>
|
||
*
|
||
* <p><b>General notes</b>
|
||
* <ul>
|
||
*
|
||
* <li><code>Real</code> objects are not immutable, like Java
|
||
* <code>Double</code> or <code>BigDecimal</code>. This means that you
|
||
* should not think of a <code>Real</code> object as a "number", but rather
|
||
* as a "register holding a number". This design choice is done to encourage
|
||
* object reuse and limit garbage production for more efficient execution on
|
||
* e.g. a limited MIDP device. The design choice is reflected in the API,
|
||
* where an operation like {@link #add(Real) add} does not return a new
|
||
* object containing the result (as with {@link
|
||
* java.math.BigDecimal#add(java.math.BigDecimal) BigDecimal}), but rather
|
||
* adds the argument to the object itself, and returns nothing.
|
||
*
|
||
* <li>This library implements infinities and NaN (Not-a-Number) following
|
||
* the IEEE 754 logic. If an operation produces a result larger (in
|
||
* magnitude) than the largest representable number, a value representing
|
||
* positive or negative infinity is generated. If an operation produces a
|
||
* result smaller than the smallest representable number, a positive or
|
||
* negative zero is generated. If an operation is undefined, a NaN value is
|
||
* produced. Abnormal numbers are often fine to use in further
|
||
* calculations. In most cases where the final result would be meaningful,
|
||
* abnormal numbers accomplish this, e.g. atan(1/0)=π/2. In most cases
|
||
* where the final result is not meaningful, a NaN will be produced.
|
||
* <i>No exception is ever (deliberately) thrown.</i>
|
||
*
|
||
* <li>Error bounds listed under <a href="#method_detail">Method Detail</a>
|
||
* are calculated using William Rossi's <a
|
||
* href="http://dfp.sourceforge.net/">rossi.dfp.dfp</a> at 40 decimal digits
|
||
* accuracy. Error bounds are for "typical arguments" and may increase when
|
||
* results approach zero or
|
||
* infinity. The abbreviation {@link Math#ulp(double) ULP} means Unit in the
|
||
* Last Place. An error bound of <20> ULP means that the result is correctly
|
||
* rounded. The relative execution time listed under each method is the
|
||
* average from running on SonyEricsson T610 (R3C), K700i, and Nokia 6230i.
|
||
*
|
||
* <li>The library is not thread-safe. Static <code>Real</code> objects are
|
||
* used extensively as temporary values to avoid garbage production and the
|
||
* overhead of <code>new</code>. To make the library thread-safe, references
|
||
* to all these static objects must be replaced with code that instead
|
||
* allocates new <code>Real</code> objects in their place.
|
||
*
|
||
* <li>There is one bug that occurs again and again and is really difficult
|
||
* to debug. Although the pre-calculated constants are declared <code>static
|
||
* final</code>, Java cannot really protect the contents of the objects in
|
||
* the same way as <code>const</code>s are protected in C/C++. Consequently,
|
||
* you can accidentally change these values if you send them into a function
|
||
* that modifies its arguments. If you were to modify {@link #ONE Real.ONE}
|
||
* for instance, many of the succeeding calculations would be wrong because
|
||
* the same variable is used extensively in the internal calculations of
|
||
* Real.java.
|
||
*
|
||
* </ul>
|
||
*/
|
||
public final class Real
|
||
{
|
||
/**
|
||
* The mantissa of a <code>Real</code>. <i>To maintain numbers in a
|
||
* normalized state and to preserve the integrity of abnormal numbers, it
|
||
* is discouraged to modify the inner representation of a
|
||
* <code>Real</code> directly.</i>
|
||
*
|
||
* <p>The number represented by a <code>Real</code> equals:<br>
|
||
* -1<sup>sign</sup> <3B> mantissa <3B> 2<sup>-62</sup> <3B> 2<sup>exponent-0x40000000</sup>
|
||
*
|
||
* <p>The normalized mantissa of a finite <code>Real</code> must be
|
||
* between <code>0x4000000000000000L</code> and
|
||
* <code>0x7fffffffffffffffL</code>. Using a denormalized
|
||
* <code>Real</code> in <u>any</u> operation other than {@link
|
||
* #normalize()} may produce undefined results. The mantissa of zero and
|
||
* of an infinite value is <code>0x0000000000000000L</code>.
|
||
*
|
||
* <p>The mantissa of a NaN is any nonzero value. However, it is
|
||
* recommended to use the value <code>0x4000000000000000L</code>. Any
|
||
* other values are reserved for future extensions.
|
||
*/
|
||
public long mantissa;
|
||
/**
|
||
* The exponent of a <code>Real</code>. <i>To maintain numbers in a
|
||
* normalized state and to preserve the integrity of abnormal numbers, it
|
||
* is discouraged to modify the inner representation of a
|
||
* <code>Real</code> directly.</i>
|
||
*
|
||
* <p>The exponent of a finite <code>Real</code> must be between
|
||
* <code>0x00000000</code> and <code>0x7fffffff</code>. The exponent of
|
||
* zero <code>0x00000000</code>.
|
||
*
|
||
* <p>The exponent of an infinite value and of a NaN is any negative
|
||
* value. However, it is recommended to use the value
|
||
* <code>0x80000000</code>. Any other values are reserved for future
|
||
* extensions.
|
||
*/
|
||
public int exponent;
|
||
/**
|
||
* The sign of a <code>Real</code>. <i>To maintain numbers in a normalized
|
||
* state and to preserve the integrity of abnormal numbers, it is
|
||
* discouraged to modify the inner representation of a <code>Real</code>
|
||
* directly.</i>
|
||
*
|
||
* <p>The sign of a finite, zero or infinite <code>Real</code> is 0 for
|
||
* positive values and 1 for negative values. Any other values may produce
|
||
* undefined results.
|
||
*
|
||
* <p>The sign of a NaN is ignored. However, it is recommended to use the
|
||
* value <code>0</code>. Any other values are reserved for future
|
||
* extensions.
|
||
*/
|
||
public byte sign;
|
||
/**
|
||
* Set to <code>false</code> during numerical algorithms to favor accuracy
|
||
* over prettyness. This flag is initially set to <code>true</code>.
|
||
*
|
||
* <p>The flag controls the operation of a subtraction of two
|
||
* almost-identical numbers that differ only in the last three bits of the
|
||
* mantissa. With this flag enabled, the result of such a subtraction is
|
||
* rounded down to zero. Probabilistically, this is the correct course of
|
||
* action in an overwhelmingly large percentage of calculations.
|
||
* However, certain numerical algorithms such as differentiation depend
|
||
* on keeping maximum accuracy during subtraction.
|
||
*
|
||
* <p>Note, that because of <code>magicRounding</code>,
|
||
* <code>a.sub(b)</code> may produce zero even though
|
||
* <code>a.equalTo(b)</code> returns <code>false</code>. This must be
|
||
* considered e.g. when trying to avoid division by zero.
|
||
*/
|
||
public static boolean magicRounding = true;
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 0. Among other
|
||
* uses, this value is used as a result when a positive underflow occurs.
|
||
*/
|
||
public static final Real ZERO = new Real(0,0x00000000,0x0000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 1.
|
||
*/
|
||
public static final Real ONE = new Real(0,0x40000000,0x4000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 2.
|
||
*/
|
||
public static final Real TWO = new Real(0,0x40000001,0x4000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 3.
|
||
*/
|
||
public static final Real THREE= new Real(0,0x40000001,0x6000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 5.
|
||
*/
|
||
public static final Real FIVE = new Real(0,0x40000002,0x5000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 10.
|
||
*/
|
||
public static final Real TEN = new Real(0,0x40000003,0x5000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 100.
|
||
*/
|
||
public static final Real HUNDRED=new Real(0,0x40000006,0x6400000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of 1/2.
|
||
*/
|
||
public static final Real HALF = new Real(0,0x3fffffff,0x4000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to 1/3.
|
||
*/
|
||
public static final Real THIRD= new Real(0,0x3ffffffe,0x5555555555555555L);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to 1/10.
|
||
*/
|
||
public static final Real TENTH= new Real(0,0x3ffffffc,0x6666666666666666L);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to 1/100.
|
||
*/
|
||
public static final Real PERCENT=new Real(0,0x3ffffff9,0x51eb851eb851eb85L);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to the
|
||
* square root of 2.
|
||
*/
|
||
public static final Real SQRT2= new Real(0,0x40000000,0x5a827999fcef3242L);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to the
|
||
* square root of 1/2.
|
||
*/
|
||
public static final Real SQRT1_2=new Real(0,0x3fffffff,0x5a827999fcef3242L);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to 2π.
|
||
*/
|
||
public static final Real PI2 = new Real(0,0x40000002,0x6487ed5110b4611aL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to π, the
|
||
* ratio of the circumference of a circle to its diameter.
|
||
*/
|
||
public static final Real PI = new Real(0,0x40000001,0x6487ed5110b4611aL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to π/2.
|
||
*/
|
||
public static final Real PI_2 = new Real(0,0x40000000,0x6487ed5110b4611aL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to π/4.
|
||
*/
|
||
public static final Real PI_4 = new Real(0,0x3fffffff,0x6487ed5110b4611aL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to π/8.
|
||
*/
|
||
public static final Real PI_8 = new Real(0,0x3ffffffe,0x6487ed5110b4611aL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to <i>e</i>,
|
||
* the base of the natural logarithms.
|
||
*/
|
||
public static final Real E = new Real(0,0x40000001,0x56fc2a2c515da54dL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to the
|
||
* natural logarithm of 2.
|
||
*/
|
||
public static final Real LN2 = new Real(0,0x3fffffff,0x58b90bfbe8e7bcd6L);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to the
|
||
* natural logarithm of 10.
|
||
*/
|
||
public static final Real LN10 = new Real(0,0x40000001,0x49aec6eed554560bL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to the
|
||
* base-2 logarithm of <i>e</i>.
|
||
*/
|
||
public static final Real LOG2E= new Real(0,0x40000000,0x5c551d94ae0bf85eL);
|
||
/**
|
||
* A <code>Real</code> constant that is closer than any other to the
|
||
* base-10 logarithm of <i>e</i>.
|
||
*/
|
||
public static final Real LOG10E=new Real(0,0x3ffffffe,0x6f2dec549b9438cbL);
|
||
/**
|
||
* A <code>Real</code> constant holding the maximum non-infinite positive
|
||
* number = 4.197e323228496.
|
||
*/
|
||
public static final Real MAX = new Real(0,0x7fffffff,0x7fffffffffffffffL);
|
||
/**
|
||
* A <code>Real</code> constant holding the minimum non-zero positive
|
||
* number = 2.383e-323228497.
|
||
*/
|
||
public static final Real MIN = new Real(0,0x00000000,0x4000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the value of NaN (not-a-number).
|
||
* This value is always used as a result to signal an invalid operation.
|
||
*/
|
||
public static final Real NAN = new Real(0,0x80000000,0x4000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the value of positive infinity.
|
||
* This value is always used as a result to signal a positive overflow.
|
||
*/
|
||
public static final Real INF = new Real(0,0x80000000,0x0000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the value of negative infinity.
|
||
* This value is always used as a result to signal a negative overflow.
|
||
*/
|
||
public static final Real INF_N= new Real(1,0x80000000,0x0000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the value of negative zero. This
|
||
* value is used as a result e.g. when a negative underflow occurs.
|
||
*/
|
||
public static final Real ZERO_N=new Real(1,0x00000000,0x0000000000000000L);
|
||
/**
|
||
* A <code>Real</code> constant holding the exact value of -1.
|
||
*/
|
||
public static final Real ONE_N= new Real(1,0x40000000,0x4000000000000000L);
|
||
private static final int clz_magic = 0x7c4acdd;
|
||
private static final byte[] clz_tab =
|
||
{ 31,22,30,21,18,10,29, 2,20,17,15,13, 9, 6,28, 1,
|
||
23,19,11, 3,16,14, 7,24,12, 4, 8,25, 5,26,27, 0 };
|
||
/**
|
||
* Creates a new <code>Real</code> with a value of zero.
|
||
*/
|
||
public Real() {
|
||
}
|
||
/**
|
||
* Creates a new <code>Real</code>, assigning the value of another
|
||
* <code>Real</code>. See {@link #assign(Real)}.
|
||
*
|
||
* @param a the <code>Real</code> to assign.
|
||
*/
|
||
public Real(Real a) {
|
||
{ this.mantissa = a.mantissa; this.exponent = a.exponent; this.sign = a.sign; };
|
||
}
|
||
/**
|
||
* Creates a new <code>Real</code>, assigning the value of an integer. See
|
||
* {@link #assign(int)}.
|
||
*
|
||
* @param a the <code>int</code> to assign.
|
||
*/
|
||
public Real(int a) {
|
||
assign(a);
|
||
}
|
||
/**
|
||
* Creates a new <code>Real</code>, assigning the value of a long
|
||
* integer. See {@link #assign(long)}.
|
||
*
|
||
* @param a the <code>long</code> to assign.
|
||
*/
|
||
public Real(long a) {
|
||
assign(a);
|
||
}
|
||
/**
|
||
* Creates a new <code>Real</code>, assigning the value encoded in a
|
||
* <code>String</code> using base-10. See {@link #assign(String)}.
|
||
*
|
||
* @param a the <code>String</code> to assign.
|
||
*/
|
||
public Real(String a) {
|
||
assign(a,10);
|
||
}
|
||
/**
|
||
* Creates a new <code>Real</code>, assigning the value encoded in a
|
||
* <code>String</code> using the specified number base. See {@link
|
||
* #assign(String,int)}.
|
||
*
|
||
* @param a the <code>String</code> to assign.
|
||
* @param base the number base of <code>a</code>. Valid base values are 2,
|
||
* 8, 10 and 16.
|
||
*/
|
||
public Real(String a, int base) {
|
||
assign(a,base);
|
||
}
|
||
/**
|
||
* Creates a new <code>Real</code>, assigning a value by directly setting
|
||
* the fields of the internal representation. The arguments must represent
|
||
* a valid, normalized <code>Real</code>. This is the fastest way of
|
||
* creating a constant value. See {@link #assign(int,int,long)}.
|
||
*
|
||
* @param s {@link #sign} bit, 0 for positive sign, 1 for negative sign
|
||
* @param e {@link #exponent}
|
||
* @param m {@link #mantissa}
|
||
*/
|
||
public Real(int s, int e, long m) {
|
||
{ this.sign=(byte)s; this.exponent=e; this.mantissa=m; };
|
||
}
|
||
/**
|
||
* Creates a new <code>Real</code>, assigning the value previously encoded
|
||
* into twelve consecutive bytes in a byte array using {@link
|
||
* #toBytes(byte[],int) toBytes}. See {@link #assign(byte[],int)}.
|
||
*
|
||
* @param data byte array to decode into this <code>Real</code>.
|
||
* @param offset offset to start encoding from. The bytes
|
||
* <code>data[offset]...data[offset+11]</code> will be
|
||
* read.
|
||
*/
|
||
public Real(byte [] data, int offset) {
|
||
assign(data,offset);
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> the value of another <code>Real</code>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to assign.
|
||
*/
|
||
public void assign(Real a) {
|
||
if (a == null) {
|
||
makeZero();
|
||
return;
|
||
}
|
||
sign = a.sign;
|
||
exponent = a.exponent;
|
||
mantissa = a.mantissa;
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> the value of an integer.
|
||
* All integer values can be represented without loss of accuracy.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = (double)a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.6
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to assign.
|
||
*/
|
||
public void assign(int a) {
|
||
if (a==0) {
|
||
makeZero();
|
||
return;
|
||
}
|
||
sign = 0;
|
||
if (a<0) {
|
||
sign = 1;
|
||
a = -a; // Also works for 0x80000000
|
||
}
|
||
// Normalize int
|
||
int t=a; t|=t>>1; t|=t>>2; t|=t>>4; t|=t>>8; t|=t>>16;
|
||
t = clz_tab[(t*clz_magic)>>>27]-1;
|
||
exponent = 0x4000001E-t;
|
||
mantissa = ((long)a)<<(32+t);
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> the value of a signed long integer.
|
||
* All long values can be represented without loss of accuracy.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = (double)a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>long</code> to assign.
|
||
*/
|
||
public void assign(long a) {
|
||
sign = 0;
|
||
if (a<0) {
|
||
sign = 1;
|
||
a = -a; // Also works for 0x8000000000000000
|
||
}
|
||
exponent = 0x4000003E;
|
||
mantissa = a;
|
||
normalize();
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> a value encoded in a <code>String</code>
|
||
* using base-10, as specified in {@link #assign(String,int)}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Double.{@link Double#valueOf(String) valueOf}(a);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* <20>-1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 80
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>String</code> to assign.
|
||
*/
|
||
public void assign(String a) {
|
||
assign(a,10);
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> a value encoded in a <code>String</code>
|
||
* using the specified number base. The string is parsed as follows:
|
||
*
|
||
* <ul>
|
||
* <li>If the string is <code>null</code> or an empty string, zero is
|
||
* assigned.
|
||
* <li>Leading spaces are ignored.
|
||
* <li>An optional sign, '+', '-' or '/', where '/' precedes a negative
|
||
* two's-complement number, reading: "an infinite number of 1-bits
|
||
* preceding the number".
|
||
* <li>Optional digits preceding the radix, in the specified base.
|
||
* <ul>
|
||
* <li>In base-2, allowed digits are '01'.
|
||
* <li>In base-8, allowed digits are '01234567'.
|
||
* <li>In base-10, allowed digits are '0123456789'.
|
||
* <li>In base-16, allowed digits are '0123456789ABCDEF'.
|
||
</ul>
|
||
* <li>An optional radix character, '.' or ','.
|
||
* <li>Optional digits following the radix.
|
||
* <li>The following spaces are ignored.
|
||
* <li>An optional exponent indicator, 'e'. If not base-16, or after a
|
||
* space, 'E' is also accepted.
|
||
* <li>An optional sign, '+' or '-'.
|
||
* <li>Optional exponent digits <i><b>in base-10</b></i>.
|
||
* </ul>
|
||
*
|
||
* <p><i>Valid examples:</i><br>
|
||
* base-2: <code>"-.110010101e+5"</code><br>
|
||
* base-8: <code>"+5462E-99"</code><br>
|
||
* base-10: <code>" 3,1415927"</code><br>
|
||
* base-16: <code>"/FFF800C.CCCE e64"</code>
|
||
*
|
||
* <p>The number is parsed until the end of the string or an unknown
|
||
* character is encountered, then silently returns even if the whole
|
||
* string has not been parsed. Please note that specifying an
|
||
* excessive number of digits in base-10 may in fact decrease the
|
||
* accuracy of the result because of the extra multiplications performed.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td>
|
||
* <td colspan="2">
|
||
* <code>this = Double.{@link Double#valueOf(String) valueOf}(a);
|
||
* // Works only for base-10</code>
|
||
* </td></tr><tr><td valign="top" rowspan="2"><i>
|
||
* Approximate error bound:</i>
|
||
* </td><td width="1%">base-10</td><td>
|
||
* <20>-1 ULPs
|
||
* </td></tr><tr><td>2/8/16</td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td valign="top" rowspan="4"><i>
|
||
* Execution time relative to add: </i>
|
||
* </td><td width="1%">base-2</td><td>
|
||
* 54
|
||
* </td></tr><tr><td>base-8</td><td>
|
||
* 60
|
||
* </td></tr><tr><td>base-10</td><td>
|
||
* 80
|
||
* </td></tr><tr><td>base-16 </td><td>
|
||
* 60
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>String</code> to assign.
|
||
* @param base the number base of <code>a</code>. Valid base values are
|
||
* 2, 8, 10 and 16.
|
||
*/
|
||
public void assign(String a, int base) {
|
||
if (a==null || a.length()==0) {
|
||
assign(ZERO);
|
||
return;
|
||
}
|
||
atof(a,base);
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> a value by directly setting the fields
|
||
* of the internal representation. The arguments must represent a valid,
|
||
* normalized <code>Real</code>. This is the fastest way of assigning a
|
||
* constant value.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = (1-2*s) * m *
|
||
* Math.{@link Math#pow(double,double)
|
||
* pow}(2.0,e-0x400000e3);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @param s {@link #sign} bit, 0 for positive sign, 1 for negative sign
|
||
* @param e {@link #exponent}
|
||
* @param m {@link #mantissa}
|
||
*/
|
||
public void assign(int s, int e, long m) {
|
||
sign = (byte)s;
|
||
exponent = e;
|
||
mantissa = m;
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> a value previously encoded into into
|
||
* twelve consecutive bytes in a byte array using {@link
|
||
* #toBytes(byte[],int) toBytes}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.2
|
||
* </td></tr></table>
|
||
*
|
||
* @param data byte array to decode into this <code>Real</code>.
|
||
* @param offset offset to start encoding from. The bytes
|
||
* <code>data[offset]...data[offset+11]</code> will be
|
||
* read.
|
||
*/
|
||
public void assign(byte [] data, int offset) {
|
||
sign = (byte)((data[offset+4]>>7)&1);
|
||
exponent = (((data[offset ]&0xff)<<24)+
|
||
((data[offset +1]&0xff)<<16)+
|
||
((data[offset +2]&0xff)<<8)+
|
||
((data[offset +3]&0xff)));
|
||
mantissa = (((long)(data[offset+ 4]&0x7f)<<56)+
|
||
((long)(data[offset+ 5]&0xff)<<48)+
|
||
((long)(data[offset+ 6]&0xff)<<40)+
|
||
((long)(data[offset+ 7]&0xff)<<32)+
|
||
((long)(data[offset+ 8]&0xff)<<24)+
|
||
((long)(data[offset+ 9]&0xff)<<16)+
|
||
((long)(data[offset+10]&0xff)<< 8)+
|
||
( (data[offset+11]&0xff)));
|
||
}
|
||
/**
|
||
* Encodes an accurate representation of this <code>Real</code> value into
|
||
* twelve consecutive bytes in a byte array. Can be decoded using {@link
|
||
* #assign(byte[],int)}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.2
|
||
* </td></tr></table>
|
||
*
|
||
* @param data byte array to save this <code>Real</code> in.
|
||
* @param offset offset to start encoding to. The bytes
|
||
* <code>data[offset]...data[offset+11]</code> will be
|
||
* written.
|
||
*/
|
||
public void toBytes(byte [] data, int offset) {
|
||
data[offset ] = (byte)(exponent>>24);
|
||
data[offset+ 1] = (byte)(exponent>>16);
|
||
data[offset+ 2] = (byte)(exponent>>8);
|
||
data[offset+ 3] = (byte)(exponent);
|
||
data[offset+ 4] = (byte)((sign<<7)+(mantissa>>56));
|
||
data[offset+ 5] = (byte)(mantissa>>48);
|
||
data[offset+ 6] = (byte)(mantissa>>40);
|
||
data[offset+ 7] = (byte)(mantissa>>32);
|
||
data[offset+ 8] = (byte)(mantissa>>24);
|
||
data[offset+ 9] = (byte)(mantissa>>16);
|
||
data[offset+10] = (byte)(mantissa>>8);
|
||
data[offset+11] = (byte)(mantissa);
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> the value corresponding to a given bit
|
||
* representation. The argument is considered to be a representation of a
|
||
* floating-point value according to the IEEE 754 floating-point "single
|
||
* format" bit layout.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>float</code><i> code:</i></td><td>
|
||
* <code>this = Float.{@link Float#intBitsToFloat(int)
|
||
* intBitsToFloat}(bits);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.6
|
||
* </td></tr></table>
|
||
*
|
||
* @param bits a <code>float</code> value encoded in an <code>int</code>.
|
||
*/
|
||
public void assignFloatBits(int bits) {
|
||
sign = (byte)(bits>>>31);
|
||
exponent = (bits>>23)&0xff;
|
||
mantissa = (long)(bits&0x007fffff)<<39;
|
||
if (exponent == 0 && mantissa == 0)
|
||
return; // Valid zero
|
||
if (exponent == 0 && mantissa != 0) {
|
||
// Degenerate small float
|
||
exponent = 0x40000000-126;
|
||
normalize();
|
||
return;
|
||
}
|
||
if (exponent <= 254) {
|
||
// Normal IEEE 754 float
|
||
exponent += 0x40000000-127;
|
||
mantissa |= 1L<<62;
|
||
return;
|
||
}
|
||
if (mantissa == 0)
|
||
makeInfinity(sign);
|
||
else
|
||
makeNan();
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> the value corresponding to a given bit
|
||
* representation. The argument is considered to be a representation of a
|
||
* floating-point value according to the IEEE 754 floating-point "double
|
||
* format" bit layout.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Double.{@link Double#longBitsToDouble(long)
|
||
* longBitsToDouble}(bits);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.6
|
||
* </td></tr></table>
|
||
*
|
||
* @param bits a <code>double</code> value encoded in a <code>long</code>.
|
||
*/
|
||
public void assignDoubleBits(long bits) {
|
||
sign = (byte)((bits>>63)&1);
|
||
exponent = (int)((bits>>52)&0x7ff);
|
||
mantissa = (bits&0x000fffffffffffffL)<<10;
|
||
if (exponent == 0 && mantissa == 0)
|
||
return; // Valid zero
|
||
if (exponent == 0 && mantissa != 0) {
|
||
// Degenerate small float
|
||
exponent = 0x40000000-1022;
|
||
normalize();
|
||
return;
|
||
}
|
||
if (exponent <= 2046) {
|
||
// Normal IEEE 754 float
|
||
exponent += 0x40000000-1023;
|
||
mantissa |= 1L<<62;
|
||
return;
|
||
}
|
||
if (mantissa == 0)
|
||
makeInfinity(sign);
|
||
else
|
||
makeNan();
|
||
}
|
||
/**
|
||
* Returns a representation of this <code>Real</code> according to the
|
||
* IEEE 754 floating-point "single format" bit layout.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>float</code><i> code:</i></td><td>
|
||
* <code>Float.{@link Float#floatToIntBits(float)
|
||
* floatToIntBits}(this)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.7
|
||
* </td></tr></table>
|
||
*
|
||
* @return the bits that represent the floating-point number.
|
||
*/
|
||
public int toFloatBits() {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return 0x7fffffff; // nan
|
||
int e = exponent-0x40000000+127;
|
||
long m = mantissa;
|
||
// Round properly!
|
||
m += 1L<<38;
|
||
if (m<0) {
|
||
m >>>= 1;
|
||
e++;
|
||
if (exponent < 0) // Overflow
|
||
return (sign<<31)|0x7f800000; // inf
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || e > 254)
|
||
return (sign<<31)|0x7f800000; // inf
|
||
if ((this.exponent == 0 && this.mantissa == 0) || e < -22)
|
||
return (sign<<31); // zero
|
||
if (e <= 0) // Degenerate small float
|
||
return (sign<<31)|((int)(m>>>(40-e))&0x007fffff);
|
||
// Normal IEEE 754 float
|
||
return (sign<<31)|(e<<23)|((int)(m>>>39)&0x007fffff);
|
||
}
|
||
/**
|
||
* Returns a representation of this <code>Real</code> according to the
|
||
* IEEE 754 floating-point "double format" bit layout.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>Double.{@link Double#doubleToLongBits(double)
|
||
* doubleToLongBits}(this)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.7
|
||
* </td></tr></table>
|
||
*
|
||
* @return the bits that represent the floating-point number.
|
||
*/
|
||
public long toDoubleBits() {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return 0x7fffffffffffffffL; // nan
|
||
int e = exponent-0x40000000+1023;
|
||
long m = mantissa;
|
||
// Round properly!
|
||
m += 1L<<9;
|
||
if (m<0) {
|
||
m >>>= 1;
|
||
e++;
|
||
if (exponent < 0)
|
||
return ((long)sign<<63)|0x7ff0000000000000L; // inf
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || e > 2046)
|
||
return ((long)sign<<63)|0x7ff0000000000000L; // inf
|
||
if ((this.exponent == 0 && this.mantissa == 0) || e < -51)
|
||
return ((long)sign<<63); // zero
|
||
if (e <= 0) // Degenerate small double
|
||
return ((long)sign<<63)|((m>>>(11-e))&0x000fffffffffffffL);
|
||
// Normal IEEE 754 double
|
||
return ((long)sign<<63)|((long)e<<52)|((m>>>10)&0x000fffffffffffffL);
|
||
}
|
||
/**
|
||
* Makes this <code>Real</code> the value of positive zero.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = 0;</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.2
|
||
* </td></tr></table>
|
||
*/
|
||
public void makeZero() {
|
||
sign = 0;
|
||
mantissa = 0;
|
||
exponent = 0;
|
||
}
|
||
/**
|
||
* Makes this <code>Real</code> the value of zero with the specified sign.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = 0.0 * (1-2*s);</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.2
|
||
* </td></tr></table>
|
||
*
|
||
* @param s sign bit, 0 to make a positive zero, 1 to make a negative zero
|
||
*/
|
||
public void makeZero(int s) {
|
||
sign = (byte)s;
|
||
mantissa = 0;
|
||
exponent = 0;
|
||
}
|
||
/**
|
||
* Makes this <code>Real</code> the value of infinity with the specified
|
||
* sign.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Double.{@link Double#POSITIVE_INFINITY POSITIVE_INFINITY}
|
||
* * (1-2*s);</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @param s sign bit, 0 to make positive infinity, 1 to make negative
|
||
* infinity
|
||
*/
|
||
public void makeInfinity(int s) {
|
||
sign = (byte)s;
|
||
mantissa = 0;
|
||
exponent = 0x80000000;
|
||
}
|
||
/**
|
||
* Makes this <code>Real</code> the value of Not-a-Number (NaN).
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Double.{@link Double#NaN NaN};</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*/
|
||
public void makeNan() {
|
||
sign = 0;
|
||
mantissa = 0x4000000000000000L;
|
||
exponent = 0x80000000;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the value of this <code>Real</code> is
|
||
* zero, <code>false</code> otherwise.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this == 0)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* zero, <code>false</code> otherwise.
|
||
*/
|
||
public boolean isZero() {
|
||
return (exponent == 0 && mantissa == 0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the value of this <code>Real</code> is
|
||
* infinite, <code>false</code> otherwise.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>Double.{@link Double#isInfinite(double) isInfinite}(this)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* infinite, <code>false</code> if it is finite or NaN.
|
||
*/
|
||
public boolean isInfinity() {
|
||
return (exponent < 0 && mantissa == 0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the value of this <code>Real</code> is
|
||
* Not-a-Number (NaN), <code>false</code> otherwise.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>Double.{@link Double#isNaN(double) isNaN}(this)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* NaN, <code>false</code> otherwise.
|
||
*/
|
||
public boolean isNan() {
|
||
return (exponent < 0 && mantissa != 0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the value of this <code>Real</code> is
|
||
* finite, <code>false</code> otherwise.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(!Double.{@link Double#isNaN(double) isNaN}(this) &&
|
||
* !Double.{@link Double#isInfinite(double)
|
||
* isInfinite}(this))</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* finite, <code>false</code> if it is infinite or NaN.
|
||
*/
|
||
public boolean isFinite() {
|
||
// That is, non-infinite and non-nan
|
||
return (exponent >= 0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the value of this <code>Real</code> is
|
||
* finite and nonzero, <code>false</code> otherwise.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(!Double.{@link Double#isNaN(double) isNaN}(this) &&
|
||
* !Double.{@link Double#isInfinite(double) isInfinite}(this) &&
|
||
* (this!=0))</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* finite and nonzero, <code>false</code> if it is infinite, NaN or
|
||
* zero.
|
||
*/
|
||
public boolean isFiniteNonZero() {
|
||
// That is, non-infinite and non-nan and non-zero
|
||
return (exponent >= 0 && mantissa != 0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the value of this <code>Real</code> is
|
||
* negative, <code>false</code> otherwise.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this < 0)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the value represented by this object
|
||
* is negative, <code>false</code> if it is positive or NaN.
|
||
*/
|
||
public boolean isNegative() {
|
||
return sign!=0;
|
||
}
|
||
/**
|
||
* Calculates the absolute value.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#abs(double) abs}(this);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.2
|
||
* </td></tr></table>
|
||
*/
|
||
public void abs() {
|
||
sign = 0;
|
||
}
|
||
/**
|
||
* Negates this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = -this;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.2
|
||
* </td></tr></table>
|
||
*/
|
||
public void neg() {
|
||
if (!(this.exponent < 0 && this.mantissa != 0))
|
||
sign ^= 1;
|
||
}
|
||
/**
|
||
* Copies the sign from <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#abs(double)
|
||
* abs}(this)*Math.{@link Math#signum(double) signum}(a);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.2
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to copy the sign from.
|
||
*/
|
||
public void copysign(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
sign = a.sign;
|
||
}
|
||
/**
|
||
* Readjusts the mantissa of this <code>Real</code>. The exponent is
|
||
* adjusted accordingly. This is necessary when the mantissa has been
|
||
* {@link #mantissa modified directly} for some purpose and may be
|
||
* denormalized. The normalized mantissa of a finite <code>Real</code>
|
||
* must have bit 63 cleared and bit 62 set. Using a denormalized
|
||
* <code>Real</code> in <u>any</u> other operation may produce undefined
|
||
* results.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.7
|
||
* </td></tr></table>
|
||
*/
|
||
public void normalize() {
|
||
if ((this.exponent >= 0)) {
|
||
if (mantissa > 0)
|
||
{
|
||
int clz = 0;
|
||
int t = (int)(mantissa>>>32);
|
||
if (t == 0) { clz = 32; t = (int)mantissa; }
|
||
t|=t>>1; t|=t>>2; t|=t>>4; t|=t>>8; t|=t>>16;
|
||
clz += clz_tab[(t*clz_magic)>>>27]-1;
|
||
mantissa <<= clz;
|
||
exponent -= clz;
|
||
if (exponent < 0) // Underflow
|
||
makeZero(sign);
|
||
}
|
||
else if (mantissa < 0)
|
||
{
|
||
mantissa = (mantissa+1)>>>1;
|
||
exponent ++;
|
||
if (mantissa == 0) { // Ooops, it was 0xffffffffffffffffL
|
||
mantissa = 0x4000000000000000L;
|
||
exponent ++;
|
||
}
|
||
if (exponent < 0) // Overflow
|
||
makeInfinity(sign);
|
||
}
|
||
else // mantissa == 0
|
||
{
|
||
exponent = 0;
|
||
}
|
||
}
|
||
}
|
||
/**
|
||
* Readjusts the mantissa of a <code>Real</code> with extended
|
||
* precision. The exponent is adjusted accordingly. This is necessary when
|
||
* the mantissa has been {@link #mantissa modified directly} for some
|
||
* purpose and may be denormalized. The normalized mantissa of a finite
|
||
* <code>Real</code> must have bit 63 cleared and bit 62 set. Using a
|
||
* denormalized <code>Real</code> in <u>any</u> other operation may
|
||
* produce undefined results.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Approximate error bound:</i></td><td>
|
||
* 2<sup>-64</sup> ULPs (i.e. of a normal precision <code>Real</code>)
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.7
|
||
* </td></tr></table>
|
||
*
|
||
* @param extra the extra 64 bits of mantissa of this extended precision
|
||
* <code>Real</code>.
|
||
* @return the extra 64 bits of mantissa of the resulting extended
|
||
* precision <code>Real</code>.
|
||
*/
|
||
public long normalize128(long extra) {
|
||
if (!(this.exponent >= 0))
|
||
return 0;
|
||
if (mantissa == 0) {
|
||
if (extra == 0) {
|
||
exponent = 0;
|
||
return 0;
|
||
}
|
||
mantissa = extra;
|
||
extra = 0;
|
||
exponent -= 64;
|
||
if (exponent < 0) { // Underflow
|
||
makeZero(sign);
|
||
return 0;
|
||
}
|
||
}
|
||
if (mantissa < 0) {
|
||
extra = (mantissa<<63)+(extra>>>1);
|
||
mantissa >>>= 1;
|
||
exponent ++;
|
||
if (exponent < 0) { // Overflow
|
||
makeInfinity(sign);
|
||
return 0;
|
||
}
|
||
return extra;
|
||
}
|
||
int clz = 0;
|
||
int t = (int)(mantissa>>>32);
|
||
if (t == 0) { clz = 32; t = (int)mantissa; }
|
||
t|=t>>1; t|=t>>2; t|=t>>4; t|=t>>8; t|=t>>16;
|
||
clz += clz_tab[(t*clz_magic)>>>27]-1;
|
||
if (clz == 0)
|
||
return extra;
|
||
mantissa = (mantissa<<clz)+(extra>>>(64-clz));
|
||
extra <<= clz;
|
||
exponent -= clz;
|
||
if (exponent < 0) { // Underflow
|
||
makeZero(sign);
|
||
return 0;
|
||
}
|
||
return extra;
|
||
}
|
||
/**
|
||
* Rounds an extended precision <code>Real</code> to the nearest
|
||
* <code>Real</code> of normal precision. Replaces the contents of this
|
||
* <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param extra the extra 64 bits of mantissa of this extended precision
|
||
* <code>Real</code>.
|
||
*/
|
||
public void roundFrom128(long extra) {
|
||
mantissa += (extra>>63)&1;
|
||
normalize();
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this Java object is the same
|
||
* object as <code>a</code>. Since a <code>Real</code> should be
|
||
* thought of as a "register holding a number", this method compares the
|
||
* object references, not the contents of the two objects.
|
||
* This is very different from {@link #equalTo(Real)}.
|
||
*
|
||
* @param a the object to compare to this.
|
||
* @return <code>true</code> if this object is the same as <code>a</code>.
|
||
*/
|
||
public boolean equals(Object a) {
|
||
return this==a;
|
||
}
|
||
private int compare(Real a) {
|
||
// Compare of normal floats, zeros, but not nan or equal-signed inf
|
||
if ((this.exponent == 0 && this.mantissa == 0) && (a.exponent == 0 && a.mantissa == 0))
|
||
return 0;
|
||
if (sign != a.sign)
|
||
return a.sign-sign;
|
||
int s = (this.sign==0) ? 1 : -1;
|
||
if ((this.exponent < 0 && this.mantissa == 0))
|
||
return s;
|
||
if ((a.exponent < 0 && a.mantissa == 0))
|
||
return -s;
|
||
if (exponent != a.exponent)
|
||
return exponent<a.exponent ? -s : s;
|
||
if (mantissa != a.mantissa)
|
||
return mantissa<a.mantissa ? -s : s;
|
||
return 0;
|
||
}
|
||
private boolean invalidCompare(Real a) {
|
||
return ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0) ||
|
||
((this.exponent < 0 && this.mantissa == 0) && (a.exponent < 0 && a.mantissa == 0) && sign == a.sign));
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is equal to
|
||
* <code>a</code>.
|
||
* If the numbers are incomparable, i.e. the values are infinities of
|
||
* the same sign or any of them is NaN, <code>false</code> is always
|
||
* returned. This method must not be confused with {@link #equals(Object)}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this == a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* equal to the value represented by <code>a</code>. <code>false</code>
|
||
* otherwise, or if the numbers are incomparable.
|
||
*/
|
||
public boolean equalTo(Real a) {
|
||
if (invalidCompare(a))
|
||
return false;
|
||
return compare(a) == 0;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is equal to
|
||
* the integer <code>a</code>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this == a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.7
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* equal to the integer <code>a</code>. <code>false</code>
|
||
* otherwise.
|
||
*/
|
||
public boolean equalTo(int a) {
|
||
tmp0.assign(a);
|
||
return equalTo(tmp0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is not equal to
|
||
* <code>a</code>.
|
||
* If the numbers are incomparable, i.e. the values are infinities of
|
||
* the same sign or any of them is NaN, <code>false</code> is always
|
||
* returned.
|
||
* This distinguishes <code>notEqualTo(a)</code> from the expression
|
||
* <code>!equalTo(a)</code>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this != a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is not
|
||
* equal to the value represented by <code>a</code>. <code>false</code>
|
||
* otherwise, or if the numbers are incomparable.
|
||
*/
|
||
public boolean notEqualTo(Real a) {
|
||
if (invalidCompare(a))
|
||
return false;
|
||
return compare(a) != 0;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is not equal to
|
||
* the integer <code>a</code>.
|
||
* If this <code>Real</code> is NaN, <code>false</code> is always
|
||
* returned.
|
||
* This distinguishes <code>notEqualTo(a)</code> from the expression
|
||
* <code>!equalTo(a)</code>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this != a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.7
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is not
|
||
* equal to the integer <code>a</code>. <code>false</code>
|
||
* otherwise, or if this <code>Real</code> is NaN.
|
||
*/
|
||
public boolean notEqualTo(int a) {
|
||
tmp0.assign(a);
|
||
return notEqualTo(tmp0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is less than
|
||
* <code>a</code>.
|
||
* If the numbers are incomparable, i.e. the values are infinities of
|
||
* the same sign or any of them is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this < a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* less than the value represented by <code>a</code>.
|
||
* <code>false</code> otherwise, or if the numbers are incomparable.
|
||
*/
|
||
public boolean lessThan(Real a) {
|
||
if (invalidCompare(a))
|
||
return false;
|
||
return compare(a) < 0;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is less than
|
||
* the integer <code>a</code>.
|
||
* If this <code>Real</code> is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this < a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.7
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* less than the integer <code>a</code>. <code>false</code> otherwise,
|
||
* or if this <code>Real</code> is NaN.
|
||
*/
|
||
public boolean lessThan(int a) {
|
||
tmp0.assign(a);
|
||
return lessThan(tmp0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is less than or
|
||
* equal to <code>a</code>.
|
||
* If the numbers are incomparable, i.e. the values are infinities of
|
||
* the same sign or any of them is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this <= a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* less than or equal to the value represented by <code>a</code>.
|
||
* <code>false</code> otherwise, or if the numbers are incomparable.
|
||
*/
|
||
public boolean lessEqual(Real a) {
|
||
if (invalidCompare(a))
|
||
return false;
|
||
return compare(a) <= 0;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is less than or
|
||
* equal to the integer <code>a</code>.
|
||
* If this <code>Real</code> is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this <= a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.7
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* less than or equal to the integer <code>a</code>. <code>false</code>
|
||
* otherwise, or if this <code>Real</code> is NaN.
|
||
*/
|
||
public boolean lessEqual(int a) {
|
||
tmp0.assign(a);
|
||
return lessEqual(tmp0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is greater than
|
||
* <code>a</code>.
|
||
* If the numbers are incomparable, i.e. the values are infinities of
|
||
* the same sign or any of them is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this > a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* greater than the value represented by <code>a</code>.
|
||
* <code>false</code> otherwise, or if the numbers are incomparable.
|
||
*/
|
||
public boolean greaterThan(Real a) {
|
||
if (invalidCompare(a))
|
||
return false;
|
||
return compare(a) > 0;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is greater than
|
||
* the integer <code>a</code>.
|
||
* If this <code>Real</code> is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this > a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.7
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* greater than the integer <code>a</code>.
|
||
* <code>false</code> otherwise, or if this <code>Real</code> is NaN.
|
||
*/
|
||
public boolean greaterThan(int a) {
|
||
tmp0.assign(a);
|
||
return greaterThan(tmp0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is greater than
|
||
* or equal to <code>a</code>.
|
||
* If the numbers are incomparable, i.e. the values are infinities of
|
||
* the same sign or any of them is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this >= a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* greater than or equal to the value represented by <code>a</code>.
|
||
* <code>false</code> otherwise, or if the numbers are incomparable.
|
||
*/
|
||
public boolean greaterEqual(Real a) {
|
||
if (invalidCompare(a))
|
||
return false;
|
||
return compare(a) >= 0;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if this <code>Real</code> is greater than
|
||
* or equal to the integer <code>a</code>.
|
||
* If this <code>Real</code> is NaN, <code>false</code> is always
|
||
* returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this >= a)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.7
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to compare to this.
|
||
* @return <code>true</code> if the value represented by this object is
|
||
* greater than or equal to the integer <code>a</code>.
|
||
* <code>false</code> otherwise, or if this <code>Real</code> is NaN.
|
||
*/
|
||
public boolean greaterEqual(int a) {
|
||
tmp0.assign(a);
|
||
return greaterEqual(tmp0);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the absolute value of this
|
||
* <code>Real</code> is less than the absolute value of
|
||
* <code>a</code>.
|
||
* If the numbers are incomparable, i.e. the values are both infinite
|
||
* or any of them is NaN, <code>false</code> is always returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(Math.{@link Math#abs(double) abs}(this) <
|
||
* Math.{@link Math#abs(double) abs}(a))</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.5
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to compare to this.
|
||
* @return <code>true</code> if the absolute of the value represented by
|
||
* this object is less than the absolute of the value represented by
|
||
* <code>a</code>.
|
||
* <code>false</code> otherwise, or if the numbers are incomparable.
|
||
*/
|
||
public boolean absLessThan(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0) || (this.exponent < 0 && this.mantissa == 0))
|
||
return false;
|
||
if ((a.exponent < 0 && a.mantissa == 0))
|
||
return true;
|
||
if (exponent != a.exponent)
|
||
return exponent<a.exponent;
|
||
return mantissa<a.mantissa;
|
||
}
|
||
/**
|
||
* Multiplies this <code>Real</code> by 2 to the power of <code>n</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* This operation is faster than normal multiplication since it only
|
||
* involves adding to the exponent.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this *= Math.{@link Math#pow(double,double) pow}(2.0,n);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.3
|
||
* </td></tr></table>
|
||
*
|
||
* @param n the integer argument.
|
||
*/
|
||
public void scalbn(int n) {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
exponent += n;
|
||
if (exponent < 0) {
|
||
if (n<0)
|
||
makeZero(sign); // Underflow
|
||
else
|
||
makeInfinity(sign); // Overflow
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the next representable neighbour of this <code>Real</code>
|
||
* in the direction towards <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* If the two values are equal, nothing happens.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this += Math.{@link Math#ulp(double) ulp}(this)*Math.{@link
|
||
* Math#signum(double) signum}(a-this);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.8
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument.
|
||
*/
|
||
public void nextafter(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) && (a.exponent < 0 && a.mantissa == 0) && sign == a.sign)
|
||
return;
|
||
int dir = -compare(a);
|
||
if (dir == 0)
|
||
return;
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
{ this.mantissa = MIN.mantissa; this.exponent = MIN.exponent; this.sign = MIN.sign; };
|
||
sign = (byte)(dir<0 ? 1 : 0);
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
{ this.mantissa = MAX.mantissa; this.exponent = MAX.exponent; this.sign = MAX.sign; };
|
||
sign = (byte)(dir<0 ? 0 : 1);
|
||
return;
|
||
}
|
||
if ((this.sign==0) ^ dir<0) {
|
||
mantissa ++;
|
||
} else {
|
||
if (mantissa == 0x4000000000000000L) {
|
||
mantissa <<= 1;
|
||
exponent--;
|
||
}
|
||
mantissa --;
|
||
}
|
||
normalize();
|
||
}
|
||
/**
|
||
* Calculates the largest (closest to positive infinity)
|
||
* <code>Real</code> value that is less than or equal to this
|
||
* <code>Real</code> and is equal to a mathematical integer.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#floor(double) floor}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.5
|
||
* </td></tr></table>
|
||
*/
|
||
public void floor() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
if (exponent < 0x40000000) {
|
||
if ((this.sign==0))
|
||
makeZero(sign);
|
||
else {
|
||
exponent = ONE.exponent;
|
||
mantissa = ONE.mantissa;
|
||
// sign unchanged!
|
||
}
|
||
return;
|
||
}
|
||
int shift = 0x4000003e-exponent;
|
||
if (shift <= 0)
|
||
return;
|
||
if ((this.sign!=0))
|
||
mantissa += ((1L<<shift)-1);
|
||
mantissa &= ~((1L<<shift)-1);
|
||
if ((this.sign!=0))
|
||
normalize();
|
||
}
|
||
/**
|
||
* Calculates the smallest (closest to negative infinity)
|
||
* <code>Real</code> value that is greater than or equal to this
|
||
* <code>Real</code> and is equal to a mathematical integer.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#ceil(double) ceil}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.8
|
||
* </td></tr></table>
|
||
*/
|
||
public void ceil() {
|
||
neg();
|
||
floor();
|
||
neg();
|
||
}
|
||
/**
|
||
* Rounds this <code>Real</code> value to the closest value that is equal
|
||
* to a mathematical integer. If two <code>Real</code> values that are
|
||
* mathematical integers are equally close, the result is the integer
|
||
* value with the largest magnitude (positive or negative). Replaces the
|
||
* contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#rint(double) rint}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.3
|
||
* </td></tr></table>
|
||
*/
|
||
public void round() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
if (exponent < 0x3fffffff) {
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
int shift = 0x4000003e-exponent;
|
||
if (shift <= 0)
|
||
return;
|
||
mantissa += 1L<<(shift-1); // Bla-bla, this works almost
|
||
mantissa &= ~((1L<<shift)-1);
|
||
normalize();
|
||
}
|
||
/**
|
||
* Truncates this <code>Real</code> value to the closest value towards
|
||
* zero that is equal to a mathematical integer.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = (double)((long)this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.2
|
||
* </td></tr></table>
|
||
*/
|
||
public void trunc() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
if (exponent < 0x40000000) {
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
int shift = 0x4000003e-exponent;
|
||
if (shift <= 0)
|
||
return;
|
||
mantissa &= ~((1L<<shift)-1);
|
||
normalize();
|
||
}
|
||
/**
|
||
* Calculates the fractional part of this <code>Real</code> by subtracting
|
||
* the closest value towards zero that is equal to a mathematical integer.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this -= (double)((long)this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.2
|
||
* </td></tr></table>
|
||
*/
|
||
public void frac() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0) || exponent < 0x40000000)
|
||
return;
|
||
int shift = 0x4000003e-exponent;
|
||
if (shift <= 0) {
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
mantissa &= ((1L<<shift)-1);
|
||
normalize();
|
||
}
|
||
/**
|
||
* Converts this <code>Real</code> value to the closest <code>int</code>
|
||
* value towards zero.
|
||
*
|
||
* <p>If the value of this <code>Real</code> is too large, {@link
|
||
* Integer#MAX_VALUE} is returned. However, if the value of this
|
||
* <code>Real</code> is too small, <code>-Integer.MAX_VALUE</code> is
|
||
* returned, not {@link Integer#MIN_VALUE}. This is done to ensure that
|
||
* the sign will be correct if you calculate
|
||
* <code>-this.toInteger()</code>. A NaN is converted to 0.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(int)this</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.6
|
||
* </td></tr></table>
|
||
*
|
||
* @return an <code>int</code> representation of this <code>Real</code>.
|
||
*/
|
||
public int toInteger() {
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (this.exponent < 0 && this.mantissa != 0))
|
||
return 0;
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
return ((this.sign==0)) ? 0x7fffffff : 0x80000001;
|
||
// 0x80000001, so that you can take -x.toInteger()
|
||
}
|
||
if (exponent < 0x40000000)
|
||
return 0;
|
||
int shift = 0x4000003e-exponent;
|
||
if (shift < 32) {
|
||
return ((this.sign==0)) ? 0x7fffffff : 0x80000001;
|
||
// 0x80000001, so that you can take -x.toInteger()
|
||
}
|
||
return (this.sign==0) ?
|
||
(int)(mantissa>>>shift) : -(int)(mantissa>>>shift);
|
||
}
|
||
/**
|
||
* Converts this <code>Real</code> value to the closest <code>long</code>
|
||
* value towards zero.
|
||
*
|
||
* <p>If the value of this <code>Real</code> is too large, {@link
|
||
* Long#MAX_VALUE} is returned. However, if the value of this
|
||
* <code>Real</code> is too small, <code>-Long.MAX_VALUE</code> is
|
||
* returned, not {@link Long#MIN_VALUE}. This is done to ensure that the
|
||
* sign will be correct if you calculate <code>-this.toLong()</code>.
|
||
* A NaN is converted to 0.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(long)this</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.5
|
||
* </td></tr></table>
|
||
*
|
||
* @return a <code>long</code> representation of this <code>Real</code>.
|
||
*/
|
||
public long toLong() {
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (this.exponent < 0 && this.mantissa != 0))
|
||
return 0;
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
return ((this.sign==0))? 0x7fffffffffffffffL:0x8000000000000001L;
|
||
// 0x8000000000000001L, so that you can take -x.toLong()
|
||
}
|
||
if (exponent < 0x40000000)
|
||
return 0;
|
||
int shift = 0x4000003e-exponent;
|
||
if (shift < 0) {
|
||
return ((this.sign==0))? 0x7fffffffffffffffL:0x8000000000000001L;
|
||
// 0x8000000000000001L, so that you can take -x.toLong()
|
||
}
|
||
return (this.sign==0) ? (mantissa>>>shift) : -(mantissa>>>shift);
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the value of this <code>Real</code>
|
||
* represents a mathematical integer. If the value is too large to
|
||
* determine if it is an integer, <code>true</code> is returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>(this == (long)this)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.6
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the value represented by this object
|
||
* represents a mathematical integer, <code>false</code> otherwise.
|
||
*/
|
||
public boolean isIntegral() {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return false;
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (this.exponent < 0 && this.mantissa == 0))
|
||
return true;
|
||
if (exponent < 0x40000000)
|
||
return false;
|
||
int shift = 0x4000003e-exponent;
|
||
if (shift <= 0)
|
||
return true;
|
||
return (mantissa&((1L<<shift)-1)) == 0;
|
||
}
|
||
/**
|
||
* Returns <code>true</code> if the mathematical integer represented
|
||
* by this <code>Real</code> is odd. You <u>must</u> first determine
|
||
* that the value is actually an integer using {@link
|
||
* #isIntegral()}. If the value is too large to determine if the
|
||
* integer is odd, <code>false</code> is returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>((((long)this)&1) == 1)</code>
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.6
|
||
* </td></tr></table>
|
||
*
|
||
* @return <code>true</code> if the mathematical integer represented by
|
||
* this <code>Real</code> is odd, <code>false</code> otherwise.
|
||
*/
|
||
public boolean isOdd() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0) ||
|
||
exponent < 0x40000000 || exponent > 0x4000003e)
|
||
return false;
|
||
int shift = 0x4000003e-exponent;
|
||
return ((mantissa>>>shift)&1) != 0;
|
||
}
|
||
/**
|
||
* Exchanges the contents of this <code>Real</code> and <code>a</code>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>tmp=this; this=a; a=tmp;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 0.5
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to exchange with this.
|
||
*/
|
||
public void swap(Real a) {
|
||
long tmpMantissa=mantissa; mantissa=a.mantissa; a.mantissa=tmpMantissa;
|
||
int tmpExponent=exponent; exponent=a.exponent; a.exponent=tmpExponent;
|
||
byte tmpSign =sign; sign =a.sign; a.sign =tmpSign;
|
||
}
|
||
// Temporary values used by functions (to avoid "new" inside functions)
|
||
private static Real tmp0 = new Real(); // tmp for basic functions
|
||
private static Real recipTmp = new Real();
|
||
private static Real recipTmp2 = new Real();
|
||
private static Real sqrtTmp = new Real();
|
||
private static Real expTmp = new Real();
|
||
private static Real expTmp2 = new Real();
|
||
private static Real expTmp3 = new Real();
|
||
private static Real tmp1 = new Real();
|
||
private static Real tmp2 = new Real();
|
||
private static Real tmp3 = new Real();
|
||
private static Real tmp4 = new Real();
|
||
private static Real tmp5 = new Real();
|
||
/**
|
||
* Calculates the sum of this <code>Real</code> and <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this += a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* <20><> 1.0 <20><>
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to add to this.
|
||
*/
|
||
public void add(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
if ((this.exponent < 0 && this.mantissa == 0) && (a.exponent < 0 && a.mantissa == 0) && sign != a.sign)
|
||
makeNan();
|
||
else
|
||
makeInfinity((this.exponent < 0 && this.mantissa == 0) ? sign : a.sign);
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0)) {
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
{ this.mantissa = a.mantissa; this.exponent = a.exponent; this.sign = a.sign; };
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
sign=0;
|
||
return;
|
||
}
|
||
byte s;
|
||
int e;
|
||
long m;
|
||
if (exponent > a.exponent ||
|
||
(exponent == a.exponent && mantissa>=a.mantissa))
|
||
{
|
||
s = a.sign;
|
||
e = a.exponent;
|
||
m = a.mantissa;
|
||
} else {
|
||
s = sign;
|
||
e = exponent;
|
||
m = mantissa;
|
||
sign = a.sign;
|
||
exponent = a.exponent;
|
||
mantissa = a.mantissa;
|
||
}
|
||
int shift = exponent-e;
|
||
if (shift>=64)
|
||
return;
|
||
if (sign == s) {
|
||
mantissa += m>>>shift;
|
||
if (mantissa >= 0 && shift>0 && ((m>>>(shift-1))&1) != 0)
|
||
mantissa ++; // We don't need normalization, so round now
|
||
if (mantissa < 0) {
|
||
// Simplified normalize()
|
||
mantissa = (mantissa+1)>>>1;
|
||
exponent ++;
|
||
if (exponent < 0) { // Overflow
|
||
makeInfinity(sign);
|
||
return;
|
||
}
|
||
}
|
||
} else {
|
||
if (shift>0) {
|
||
// Shift mantissa up to increase accuracy
|
||
mantissa <<= 1;
|
||
exponent --;
|
||
shift --;
|
||
}
|
||
m = -m;
|
||
mantissa += m>>shift;
|
||
if (mantissa >= 0 && shift>0 && ((m>>>(shift-1))&1) != 0)
|
||
mantissa ++; // We don't need to shift down, so round now
|
||
if (mantissa < 0) {
|
||
// Simplified normalize()
|
||
mantissa = (mantissa+1)>>>1;
|
||
exponent ++; // Can't overflow
|
||
} else if (shift==0) {
|
||
// Operands have equal exponents => many bits may be cancelled
|
||
// Magic rounding: if result of subtract leaves only a few bits
|
||
// standing, the result should most likely be 0...
|
||
if (magicRounding && mantissa > 0 && mantissa <= 7) {
|
||
// If arguments were integers <= 2^63-1, then don't
|
||
// do the magic rounding anyway.
|
||
// This is a bit "post mortem" investigation but it happens
|
||
// so seldom that it's no problem to spend the extra time.
|
||
m = -m;
|
||
if (exponent == 0x4000003c || exponent == 0x4000003d ||
|
||
(exponent == 0x4000003e && mantissa+m > 0)) {
|
||
long mask = (1<<(0x4000003e-exponent))-1;
|
||
if ((mantissa & mask) != 0 || (m & mask) != 0)
|
||
mantissa = 0;
|
||
} else
|
||
mantissa = 0;
|
||
}
|
||
normalize();
|
||
} // else... if (shift>=1 && mantissa>=0) it should be a-ok
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
sign=0;
|
||
}
|
||
/**
|
||
* Calculates the sum of this <code>Real</code> and the integer
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this += a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.8
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to add to this.
|
||
*/
|
||
public void add(int a) {
|
||
tmp0.assign(a);
|
||
add(tmp0);
|
||
}
|
||
/**
|
||
* Calculates the sum of this <code>Real</code> and <code>a</code> with
|
||
* extended precision. Replaces the contents of this <code>Real</code>
|
||
* with the result. Returns the extra mantissa of the extended precision
|
||
* result.
|
||
*
|
||
* <p>An extra 64 bits of mantissa is added to both arguments for extended
|
||
* precision. If any of the arguments are not of extended precision, use
|
||
* <code>0</code> for the extra mantissa.
|
||
*
|
||
* <p>Extended prevision can be useful in many situations. For instance,
|
||
* when accumulating a lot of very small values it is advantageous for the
|
||
* accumulator to have extended precision. To convert the extended
|
||
* precision value back to a normal <code>Real</code> for further
|
||
* processing, use {@link #roundFrom128(long)}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this += a;</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2<sup>-62</sup> ULPs (i.e. of a normal precision <code>Real</code>)
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 2.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param extra the extra 64 bits of mantissa of this extended precision
|
||
* <code>Real</code>.
|
||
* @param a the <code>Real</code> to add to this.
|
||
* @param aExtra the extra 64 bits of mantissa of the extended precision
|
||
* value <code>a</code>.
|
||
* @return the extra 64 bits of mantissa of the resulting extended
|
||
* precision <code>Real</code>.
|
||
*/
|
||
public long add128(long extra, Real a, long aExtra) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return 0;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
if ((this.exponent < 0 && this.mantissa == 0) && (a.exponent < 0 && a.mantissa == 0) && sign != a.sign)
|
||
makeNan();
|
||
else
|
||
makeInfinity((this.exponent < 0 && this.mantissa == 0) ? sign : a.sign);
|
||
return 0;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0)) {
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
{ this.mantissa = a.mantissa; this.exponent = a.exponent; this.sign = a.sign; };
|
||
extra = aExtra;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
sign=0;
|
||
return extra;
|
||
}
|
||
byte s;
|
||
int e;
|
||
long m;
|
||
long x;
|
||
if (exponent > a.exponent ||
|
||
(exponent == a.exponent && mantissa>a.mantissa) ||
|
||
(exponent == a.exponent && mantissa==a.mantissa &&
|
||
(extra>>>1)>=(aExtra>>>1)))
|
||
{
|
||
s = a.sign;
|
||
e = a.exponent;
|
||
m = a.mantissa;
|
||
x = aExtra;
|
||
} else {
|
||
s = sign;
|
||
e = exponent;
|
||
m = mantissa;
|
||
x = extra;
|
||
sign = a.sign;
|
||
exponent = a.exponent;
|
||
mantissa = a.mantissa;
|
||
extra = aExtra;
|
||
}
|
||
int shift = exponent-e;
|
||
if (shift>=127)
|
||
return extra;
|
||
if (shift>=64) {
|
||
x = m>>>(shift-64);
|
||
m = 0;
|
||
} else if (shift>0) {
|
||
x = (x>>>shift)+(m<<(64-shift));
|
||
m >>>= shift;
|
||
}
|
||
extra >>>= 1;
|
||
x >>>= 1;
|
||
if (sign == s) {
|
||
extra += x;
|
||
mantissa += (extra>>63)&1;
|
||
mantissa += m;
|
||
} else {
|
||
extra -= x;
|
||
mantissa -= (extra>>63)&1;
|
||
mantissa -= m;
|
||
// Magic rounding: if result of subtract leaves only a few bits
|
||
// standing, the result should most likely be 0...
|
||
if (mantissa == 0 && extra > 0 && extra <= 0x1f)
|
||
extra = 0;
|
||
}
|
||
extra <<= 1;
|
||
extra = normalize128(extra);
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
sign=0;
|
||
return extra;
|
||
}
|
||
/**
|
||
* Calculates the difference between this <code>Real</code> and
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>(To achieve extended precision subtraction, it is enough to call
|
||
* <code>a.{@link #neg() neg}()</code> before calling <code>{@link
|
||
* #add128(long,Real,long) add128}(extra,a,aExtra)</code>, since only
|
||
* the sign bit of <code>a</code> need to be changed.)
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this -= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 2.0
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to subtract from this.
|
||
*/
|
||
public void sub(Real a) {
|
||
tmp0.mantissa = a.mantissa;
|
||
tmp0.exponent = a.exponent;
|
||
tmp0.sign = (byte)(a.sign^1);
|
||
add(tmp0);
|
||
}
|
||
/**
|
||
* Calculates the difference between this <code>Real</code> and the
|
||
* integer <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this -= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 2.4
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to subtract from this.
|
||
*/
|
||
public void sub(int a) {
|
||
tmp0.assign(a);
|
||
sub(tmp0);
|
||
}
|
||
/**
|
||
* Calculates the product of this <code>Real</code> and <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this *= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.3
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to multiply to this.
|
||
*/
|
||
public void mul(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
sign ^= a.sign;
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0)) {
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0))
|
||
makeNan();
|
||
else
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
makeInfinity(sign);
|
||
return;
|
||
}
|
||
long a0 = mantissa & 0x7fffffff;
|
||
long a1 = mantissa >>> 31;
|
||
long b0 = a.mantissa & 0x7fffffff;
|
||
long b1 = a.mantissa >>> 31;
|
||
mantissa = a1*b1;
|
||
// If we're going to need normalization, we don't want to round twice
|
||
int round = (mantissa<0) ? 0 : 0x40000000;
|
||
mantissa += ((a0*b1 + a1*b0 + ((a0*b0)>>>31) + round)>>>31);
|
||
int aExp = a.exponent;
|
||
exponent += aExp-0x40000000;
|
||
if (exponent < 0) {
|
||
if (exponent == -1 && aExp < 0x40000000 && mantissa < 0) {
|
||
// Not underflow after all, it will be corrected in the
|
||
// normalization below
|
||
} else {
|
||
if (aExp < 0x40000000)
|
||
makeZero(sign); // Underflow
|
||
else
|
||
makeInfinity(sign); // Overflow
|
||
return;
|
||
}
|
||
}
|
||
// Simplified normalize()
|
||
if (mantissa < 0) {
|
||
mantissa = (mantissa+1)>>>1;
|
||
exponent ++;
|
||
if (exponent < 0) // Overflow
|
||
makeInfinity(sign);
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the product of this <code>Real</code> and the integer
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this *= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.3
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to multiply to this.
|
||
*/
|
||
public void mul(int a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return;
|
||
if (a<0) {
|
||
sign ^= 1;
|
||
a = -a;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) || a==0) {
|
||
if ((this.exponent < 0 && this.mantissa == 0))
|
||
makeNan();
|
||
else
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0))
|
||
return;
|
||
// Normalize int
|
||
int t=a; t|=t>>1; t|=t>>2; t|=t>>4; t|=t>>8; t|=t>>16;
|
||
t = clz_tab[(t*clz_magic)>>>27];
|
||
exponent += 0x1F-t;
|
||
a <<= t;
|
||
if (exponent < 0) {
|
||
makeInfinity(sign); // Overflow
|
||
return;
|
||
}
|
||
long a0 = mantissa & 0x7fffffff;
|
||
long a1 = mantissa >>> 31;
|
||
long b0 = a & 0xffffffffL;
|
||
mantissa = a1*b0;
|
||
// If we're going to need normalization, we don't want to round twice
|
||
int round = (mantissa<0) ? 0 : 0x40000000;
|
||
mantissa += ((a0*b0 + round)>>>31);
|
||
// Simplified normalize()
|
||
if (mantissa < 0) {
|
||
mantissa = (mantissa+1)>>>1;
|
||
exponent ++;
|
||
if (exponent < 0) // Overflow
|
||
makeInfinity(sign);
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the product of this <code>Real</code> and <code>a</code> with
|
||
* extended precision.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* Returns the extra mantissa of the extended precision result.
|
||
*
|
||
* <p>An extra 64 bits of mantissa is added to both arguments for
|
||
* extended precision. If any of the arguments are not of extended
|
||
* precision, use <code>0</code> for the extra mantissa. See also {@link
|
||
* #add128(long,Real,long)}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this *= a;</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2<sup>-60</sup> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 3.1
|
||
* </td></tr></table>
|
||
*
|
||
* @param extra the extra 64 bits of mantissa of this extended precision
|
||
* <code>Real</code>.
|
||
* @param a the <code>Real</code> to multiply to this.
|
||
* @param aExtra the extra 64 bits of mantissa of the extended precision
|
||
* value <code>a</code>.
|
||
* @return the extra 64 bits of mantissa of the resulting extended
|
||
* precision <code>Real</code>.
|
||
*/
|
||
public long mul128(long extra, Real a, long aExtra) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return 0;
|
||
}
|
||
sign ^= a.sign;
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0)) {
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0))
|
||
makeNan();
|
||
else
|
||
makeZero(sign);
|
||
return 0;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
makeInfinity(sign);
|
||
return 0;
|
||
}
|
||
int aExp = a.exponent;
|
||
exponent += aExp-0x40000000;
|
||
if (exponent < 0) {
|
||
if (aExp < 0x40000000)
|
||
makeZero(sign); // Underflow
|
||
else
|
||
makeInfinity(sign); // Overflow
|
||
return 0;
|
||
}
|
||
long ffffffffL = 0xffffffffL;
|
||
long a0 = extra & ffffffffL;
|
||
long a1 = extra >>> 32;
|
||
long a2 = mantissa & ffffffffL;
|
||
long a3 = mantissa >>> 32;
|
||
long b0 = aExtra & ffffffffL;
|
||
long b1 = aExtra >>> 32;
|
||
long b2 = a.mantissa & ffffffffL;
|
||
long b3 = a.mantissa >>> 32;
|
||
a0 = ((a3*b0>>>2)+
|
||
(a2*b1>>>2)+
|
||
(a1*b2>>>2)+
|
||
(a0*b3>>>2)+
|
||
0x60000000)>>>28;
|
||
//(a2*b0>>>34)+(a1*b1>>>34)+(a0*b2>>>34)+0x08000000)>>>28;
|
||
a1 *= b3;
|
||
b0 = a2*b2;
|
||
b1 *= a3;
|
||
a0 += ((a1<<2)&ffffffffL) + ((b0<<2)&ffffffffL) + ((b1<<2)&ffffffffL);
|
||
a1 = (a0>>>32) + (a1>>>30) + (b0>>>30) + (b1>>>30);
|
||
a0 &= ffffffffL;
|
||
a2 *= b3;
|
||
b2 *= a3;
|
||
a1 += ((a2<<2)&ffffffffL) + ((b2<<2)&ffffffffL);
|
||
extra = (a1<<32) + a0;
|
||
mantissa = ((a3*b3)<<2) + (a1>>>32) + (a2>>>30) + (b2>>>30);
|
||
extra = normalize128(extra);
|
||
return extra;
|
||
}
|
||
private void mul10() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
mantissa += (mantissa+2)>>>2;
|
||
exponent += 3;
|
||
if (mantissa < 0) {
|
||
mantissa = (mantissa+1)>>>1;
|
||
exponent++;
|
||
}
|
||
if (exponent < 0)
|
||
makeInfinity(sign); // Overflow
|
||
}
|
||
/**
|
||
* Calculates the square of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = this*this;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.1
|
||
* </td></tr></table>
|
||
*/
|
||
public void sqr() {
|
||
sign = 0;
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
int e = exponent;
|
||
exponent += exponent-0x40000000;
|
||
if (exponent < 0) {
|
||
if (e < 0x40000000)
|
||
makeZero(sign); // Underflow
|
||
else
|
||
makeInfinity(sign); // Overflow
|
||
return;
|
||
}
|
||
long a0 = mantissa&0x7fffffff;
|
||
long a1 = mantissa>>>31;
|
||
mantissa = a1*a1;
|
||
// If we're going to need normalization, we don't want to round twice
|
||
int round = (mantissa<0) ? 0 : 0x40000000;
|
||
mantissa += ((((a0*a1)<<1) + ((a0*a0)>>>31) + round)>>>31);
|
||
// Simplified normalize()
|
||
if (mantissa < 0) {
|
||
mantissa = (mantissa+1)>>>1;
|
||
exponent ++;
|
||
if (exponent < 0) // Overflow
|
||
makeInfinity(sign);
|
||
}
|
||
}
|
||
private static long ldiv(long a, long b) {
|
||
// Calculate (a<<63)/b, where a<2**64, b<2**63, b<=a and a<2*b The
|
||
// result will always be 63 bits, leading to a 3-stage radix-2**21
|
||
// (very high radix) algorithm, as described here:
|
||
// S.F. Oberman and M.J. Flynn, "Division Algorithms and
|
||
// Implementations," IEEE Trans. Computers, vol. 46, no. 8,
|
||
// pp. 833-854, Aug 1997 Section 4: "Very High Radix Algorithms"
|
||
int bInv24; // Approximate 1/b, never more than 24 bits
|
||
int aHi24; // High 24 bits of a (sometimes 25 bits)
|
||
int next21; // The next 21 bits of result, possibly 1 less
|
||
long q; // Resulting quotient: round((a<<63)/b)
|
||
// Preparations
|
||
bInv24 = (int)(0x400000000000L/((b>>>40)+1));
|
||
aHi24 = (int)(a>>32)>>>8;
|
||
a <<= 20; // aHi24 and a overlap by 4 bits
|
||
// Now perform the division
|
||
next21 = (int)(((long)aHi24*(long)bInv24)>>>26);
|
||
a -= next21*b; // Bits above 2**64 will always be cancelled
|
||
// No need to remove remainder, this will be cared for in next block
|
||
q = next21;
|
||
aHi24 = (int)(a>>32)>>>7;
|
||
a <<= 21;
|
||
// Two more almost identical blocks...
|
||
next21 = (int)(((long)aHi24*(long)bInv24)>>>26);
|
||
a -= next21*b;
|
||
q = (q<<21)+next21;
|
||
aHi24 = (int)(a>>32)>>>7;
|
||
a <<= 21;
|
||
next21 = (int)(((long)aHi24*(long)bInv24)>>>26);
|
||
a -= next21*b;
|
||
q = (q<<21)+next21;
|
||
// Remove final remainder
|
||
if (a<0 || a>=b) { q++; a -= b; }
|
||
a <<= 1;
|
||
// Round correctly
|
||
if (a<0 || a>=b) q++;
|
||
return q;
|
||
}
|
||
/**
|
||
* Calculates the quotient of this <code>Real</code> and <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>(To achieve extended precision division, call
|
||
* <code>aExtra=a.{@link #recip128(long) recip128}(aExtra)</code> before
|
||
* calling <code>{@link #mul128(long,Real,long)
|
||
* mul128}(extra,a,aExtra)</code>.)
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this /= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 2.6
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to divide this with.
|
||
*/
|
||
public void div(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
sign ^= a.sign;
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
if ((a.exponent < 0 && a.mantissa == 0))
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((a.exponent < 0 && a.mantissa == 0)) {
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
if ((a.exponent == 0 && a.mantissa == 0))
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((a.exponent == 0 && a.mantissa == 0)) {
|
||
makeInfinity(sign);
|
||
return;
|
||
}
|
||
exponent += 0x40000000-a.exponent;
|
||
if (mantissa < a.mantissa) {
|
||
mantissa <<= 1;
|
||
exponent--;
|
||
}
|
||
if (exponent < 0) {
|
||
if (a.exponent >= 0x40000000)
|
||
makeZero(sign); // Underflow
|
||
else
|
||
makeInfinity(sign); // Overflow
|
||
return;
|
||
}
|
||
if (a.mantissa == 0x4000000000000000L)
|
||
return;
|
||
mantissa = ldiv(mantissa,a.mantissa);
|
||
}
|
||
/**
|
||
* Calculates the quotient of this <code>Real</code> and the integer
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this /= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 2.6
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to divide this with.
|
||
*/
|
||
public void div(int a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return;
|
||
if (a<0) {
|
||
sign ^= 1;
|
||
a = -a;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0))
|
||
return;
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
if (a==0)
|
||
makeNan();
|
||
return;
|
||
}
|
||
if (a==0) {
|
||
makeInfinity(sign);
|
||
return;
|
||
}
|
||
long denom = a & 0xffffffffL;
|
||
long remainder = mantissa%denom;
|
||
mantissa /= denom;
|
||
// Normalizing mantissa and scaling remainder accordingly
|
||
int clz = 0;
|
||
int t = (int)(mantissa>>>32);
|
||
if (t == 0) { clz = 32; t = (int)mantissa; }
|
||
t|=t>>1; t|=t>>2; t|=t>>4; t|=t>>8; t|=t>>16;
|
||
clz += clz_tab[(t*clz_magic)>>>27]-1;
|
||
mantissa <<= clz;
|
||
remainder <<= clz;
|
||
exponent -= clz;
|
||
// Final division, correctly rounded
|
||
remainder = (remainder+denom/2)/denom;
|
||
mantissa += remainder;
|
||
if (exponent < 0) // Underflow
|
||
makeZero(sign);
|
||
}
|
||
/**
|
||
* Calculates the quotient of <code>a</code> and this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = a/this;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 3.1
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> to be divided by this.
|
||
*/
|
||
public void rdiv(Real a) {
|
||
{ recipTmp.mantissa = a.mantissa; recipTmp.exponent = a.exponent; recipTmp.sign = a.sign; };
|
||
recipTmp.div(this);
|
||
{ this.mantissa = recipTmp.mantissa; this.exponent = recipTmp.exponent; this.sign = recipTmp.sign; };
|
||
}
|
||
/**
|
||
* Calculates the quotient of the integer <code>a</code> and this
|
||
* <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = a/this;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 3.9
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>int</code> to be divided by this.
|
||
*/
|
||
public void rdiv(int a) {
|
||
tmp0.assign(a);
|
||
rdiv(tmp0);
|
||
}
|
||
/**
|
||
* Calculates the reciprocal of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = 1/this;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 2.3
|
||
* </td></tr></table>
|
||
*/
|
||
public void recip() {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return;
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
makeInfinity(sign);
|
||
return;
|
||
}
|
||
exponent = 0x80000000-exponent;
|
||
if (mantissa == 0x4000000000000000L) {
|
||
if (exponent < 0)
|
||
makeInfinity(sign); // Overflow
|
||
return;
|
||
}
|
||
exponent--;
|
||
mantissa = ldiv(0x8000000000000000L,mantissa);
|
||
}
|
||
/**
|
||
* Calculates the reciprocal of this <code>Real</code> with
|
||
* extended precision.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* Returns the extra mantissa of the extended precision result.
|
||
*
|
||
* <p>An extra 64 bits of mantissa is added for extended precision.
|
||
* If the argument is not of extended precision, use <code>0</code>
|
||
* for the extra mantissa. See also {@link #add128(long,Real,long)}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = 1/this;</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2<sup>-60</sup> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 17
|
||
* </td></tr></table>
|
||
*
|
||
* @param extra the extra 64 bits of mantissa of this extended precision
|
||
* <code>Real</code>.
|
||
* @return the extra 64 bits of mantissa of the resulting extended
|
||
* precision <code>Real</code>.
|
||
*/
|
||
public long recip128(long extra) {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return 0;
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
makeZero(sign);
|
||
return 0;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
makeInfinity(sign);
|
||
return 0;
|
||
}
|
||
byte s = sign;
|
||
sign = 0;
|
||
// Special case, simple power of 2
|
||
if (mantissa == 0x4000000000000000L && extra == 0) {
|
||
exponent = 0x80000000-exponent;
|
||
if (exponent<0) // Overflow
|
||
makeInfinity(s);
|
||
return 0;
|
||
}
|
||
// Normalize exponent
|
||
int exp = 0x40000000-exponent;
|
||
exponent = 0x40000000;
|
||
// Save -A
|
||
{ recipTmp.mantissa = this.mantissa; recipTmp.exponent = this.exponent; recipTmp.sign = this.sign; };
|
||
long recipTmpExtra = extra;
|
||
recipTmp.neg();
|
||
// First establish approximate result (actually 63 bit accurate)
|
||
recip();
|
||
// Perform one Newton-Raphson iteration
|
||
// Xn+1 = Xn + Xn*(1-A*Xn)
|
||
{ recipTmp2.mantissa = this.mantissa; recipTmp2.exponent = this.exponent; recipTmp2.sign = this.sign; };
|
||
extra = mul128(0,recipTmp,recipTmpExtra);
|
||
extra = add128(extra,ONE,0);
|
||
extra = mul128(extra,recipTmp2,0);
|
||
extra = add128(extra,recipTmp2,0);
|
||
// Fix exponent
|
||
scalbn(exp);
|
||
// Fix sign
|
||
if (!isNan())
|
||
sign = s;
|
||
return extra;
|
||
}
|
||
/**
|
||
* Calculates the mathematical integer that is less than or equal to
|
||
* this <code>Real</code> divided by <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#floor(double) floor}(this/a);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 22
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument.
|
||
*/
|
||
public void divf(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
if ((a.exponent < 0 && a.mantissa == 0))
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((a.exponent < 0 && a.mantissa == 0)) {
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
if ((a.exponent == 0 && a.mantissa == 0))
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((a.exponent == 0 && a.mantissa == 0)) {
|
||
makeInfinity(sign);
|
||
return;
|
||
}
|
||
{ tmp0.mantissa = a.mantissa; tmp0.exponent = a.exponent; tmp0.sign = a.sign; }; // tmp0 should be free
|
||
// Perform same division as with mod, and don't round up
|
||
long extra = tmp0.recip128(0);
|
||
extra = mul128(0,tmp0,extra);
|
||
if (((tmp0.sign!=0) && (extra < 0 || extra > 0x1f)) ||
|
||
(!(tmp0.sign!=0) && extra < 0 && extra > 0xffffffe0))
|
||
{
|
||
// For accurate floor()
|
||
mantissa++;
|
||
normalize();
|
||
}
|
||
floor();
|
||
}
|
||
private void modInternal(/*long thisExtra,*/ Real a, long aExtra) {
|
||
{ tmp0.mantissa = a.mantissa; tmp0.exponent = a.exponent; tmp0.sign = a.sign; }; // tmp0 should be free
|
||
long extra = tmp0.recip128(aExtra);
|
||
extra = tmp0.mul128(extra,this,0/*thisExtra*/); // tmp0 == this/a
|
||
if (tmp0.exponent > 0x4000003e) {
|
||
// floor() will be inaccurate
|
||
makeZero(a.sign); // What else can be done? makeNan?
|
||
return;
|
||
}
|
||
if (((tmp0.sign!=0) && (extra < 0 || extra > 0x1f)) ||
|
||
(!(tmp0.sign!=0) && extra < 0 && extra > 0xffffffe0))
|
||
{
|
||
// For accurate floor() with a bit of "magical rounding"
|
||
tmp0.mantissa++;
|
||
tmp0.normalize();
|
||
}
|
||
tmp0.floor();
|
||
tmp0.neg(); // tmp0 == -floor(this/a)
|
||
extra = tmp0.mul128(0,a,aExtra);
|
||
extra = add128(0/*thisExtra*/,tmp0,extra);
|
||
roundFrom128(extra);
|
||
}
|
||
/**
|
||
* Calculates the value of this <code>Real</code> modulo <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* The modulo in this case is defined as the remainder after subtracting
|
||
* <code>a</code> multiplied by the mathematical integer that is less than
|
||
* or equal to this <code>Real</code> divided by <code>a</code>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = this -
|
||
* a*Math.{@link Math#floor(double) floor}(this/a);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 27
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument.
|
||
*/
|
||
public void mod(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
if ((a.exponent == 0 && a.mantissa == 0))
|
||
makeNan();
|
||
else
|
||
sign = a.sign;
|
||
return;
|
||
}
|
||
if ((a.exponent < 0 && a.mantissa == 0)) {
|
||
if (sign != a.sign)
|
||
makeInfinity(a.sign);
|
||
return;
|
||
}
|
||
if ((a.exponent == 0 && a.mantissa == 0)) {
|
||
makeZero(a.sign);
|
||
return;
|
||
}
|
||
modInternal(a,0);
|
||
}
|
||
/**
|
||
* Calculates the logical <i>AND</i> of this <code>Real</code> and
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>Semantics of bitwise logical operations exactly mimic those of
|
||
* Java's bitwise integer operators. In these operations, the
|
||
* internal binary representation of the numbers are used. If the
|
||
* values represented by the operands are not mathematical
|
||
* integers, the fractional bits are also included in the operation.
|
||
*
|
||
* <p>Negative numbers are interpreted as two's-complement,
|
||
* generalized to real numbers: Negating the number inverts all
|
||
* bits, including an infinite number of 1-bits before the radix
|
||
* point and an infinite number of 1-bits after the radix point. The
|
||
* infinite number of 1-bits after the radix is rounded upwards
|
||
* producing an infinite number of 0-bits, until the first 0-bit is
|
||
* encountered which will be switched to a 1 (rounded or not, these
|
||
* two forms are mathematically equivalent). For example, the number
|
||
* "1" negated, becomes (in binary form)
|
||
* <code>...1111110.111111....</code> Rounding of the infinite
|
||
* number of 1's after the radix gives the number
|
||
* <code>...1111111.000000...</code>, which is exactly the way we
|
||
* usually see "-1" as two's-complement.
|
||
*
|
||
* <p>This method calculates a negative value if and only
|
||
* if this and <code>a</code> are both negative.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>int</code><i> code:</i></td><td>
|
||
* <code>this &= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.5
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument
|
||
*/
|
||
public void and(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0)) {
|
||
makeZero();
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
if (!(this.exponent < 0 && this.mantissa == 0) && (this.sign!=0)) {
|
||
{ this.mantissa = a.mantissa; this.exponent = a.exponent; this.sign = a.sign; };
|
||
} else if (!(a.exponent < 0 && a.mantissa == 0) && (a.sign!=0))
|
||
; // ASSIGN(this,this)
|
||
else if ((this.exponent < 0 && this.mantissa == 0) && (a.exponent < 0 && a.mantissa == 0) &&
|
||
(this.sign!=0) && (a.sign!=0))
|
||
; // makeInfinity(1)
|
||
else
|
||
makeZero();
|
||
return;
|
||
}
|
||
byte s;
|
||
int e;
|
||
long m;
|
||
if (exponent >= a.exponent) {
|
||
s = a.sign;
|
||
e = a.exponent;
|
||
m = a.mantissa;
|
||
} else {
|
||
s = sign;
|
||
e = exponent;
|
||
m = mantissa;
|
||
sign = a.sign;
|
||
exponent = a.exponent;
|
||
mantissa = a.mantissa;
|
||
}
|
||
int shift = exponent-e;
|
||
if (shift>=64) {
|
||
if (s == 0)
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
if (s != 0)
|
||
m = -m;
|
||
if ((this.sign!=0))
|
||
mantissa = -mantissa;
|
||
mantissa &= m>>shift;
|
||
sign = 0;
|
||
if (mantissa < 0) {
|
||
mantissa = -mantissa;
|
||
sign = 1;
|
||
}
|
||
normalize();
|
||
}
|
||
/**
|
||
* Calculates the logical <i>OR</i> of this <code>Real</code> and
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>See {@link #and(Real)} for an explanation of the
|
||
* interpretation of a <code>Real</code> in bitwise operations.
|
||
* This method calculates a negative value if and only
|
||
* if either this or <code>a</code> is negative.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>int</code><i> code:</i></td><td>
|
||
* <code>this |= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.6
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument
|
||
*/
|
||
public void or(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0)) {
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
{ this.mantissa = a.mantissa; this.exponent = a.exponent; this.sign = a.sign; };
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
if (!(this.exponent < 0 && this.mantissa == 0) && (this.sign!=0))
|
||
; // ASSIGN(this,this);
|
||
else if (!(a.exponent < 0 && a.mantissa == 0) && (a.sign!=0)) {
|
||
{ this.mantissa = a.mantissa; this.exponent = a.exponent; this.sign = a.sign; };
|
||
} else
|
||
makeInfinity(sign | a.sign);
|
||
return;
|
||
}
|
||
byte s;
|
||
int e;
|
||
long m;
|
||
if (((this.sign!=0) && exponent <= a.exponent) ||
|
||
((a.sign==0) && exponent >= a.exponent))
|
||
{
|
||
s = a.sign;
|
||
e = a.exponent;
|
||
m = a.mantissa;
|
||
} else {
|
||
s = sign;
|
||
e = exponent;
|
||
m = mantissa;
|
||
sign = a.sign;
|
||
exponent = a.exponent;
|
||
mantissa = a.mantissa;
|
||
}
|
||
int shift = exponent-e;
|
||
if (shift>=64 || shift<=-64)
|
||
return;
|
||
if (s != 0)
|
||
m = -m;
|
||
if ((this.sign!=0))
|
||
mantissa = -mantissa;
|
||
if (shift>=0)
|
||
mantissa |= m>>shift;
|
||
else
|
||
mantissa |= m<<(-shift);
|
||
sign = 0;
|
||
if (mantissa < 0) {
|
||
mantissa = -mantissa;
|
||
sign = 1;
|
||
}
|
||
normalize();
|
||
}
|
||
/**
|
||
* Calculates the logical <i>XOR</i> of this <code>Real</code> and
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>See {@link #and(Real)} for an explanation of the
|
||
* interpretation of a <code>Real</code> in bitwise operations.
|
||
* This method calculates a negative value if and only
|
||
* if exactly one of this and <code>a</code> is negative.
|
||
*
|
||
* <p>The operation <i>NOT</i> has been omitted in this library
|
||
* because it cannot be generalized to fractional numbers. If this
|
||
* <code>Real</code> represents a mathematical integer, the
|
||
* operation <i>NOT</i> can be calculated as "this <i>XOR</i> -1",
|
||
* which is equivalent to "this <i>XOR</i>
|
||
* <code>/FFFFFFFF.0000</code>".
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>int</code><i> code:</i></td><td>
|
||
* <code>this ^= a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.5
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument
|
||
*/
|
||
public void xor(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0)) {
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
{ this.mantissa = a.mantissa; this.exponent = a.exponent; this.sign = a.sign; };
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
makeInfinity(sign ^ a.sign);
|
||
return;
|
||
}
|
||
byte s;
|
||
int e;
|
||
long m;
|
||
if (exponent >= a.exponent) {
|
||
s = a.sign;
|
||
e = a.exponent;
|
||
m = a.mantissa;
|
||
} else {
|
||
s = sign;
|
||
e = exponent;
|
||
m = mantissa;
|
||
sign = a.sign;
|
||
exponent = a.exponent;
|
||
mantissa = a.mantissa;
|
||
}
|
||
int shift = exponent-e;
|
||
if (shift>=64)
|
||
return;
|
||
if (s != 0)
|
||
m = -m;
|
||
if ((this.sign!=0))
|
||
mantissa = -mantissa;
|
||
mantissa ^= m>>shift;
|
||
sign = 0;
|
||
if (mantissa < 0) {
|
||
mantissa = -mantissa;
|
||
sign = 1;
|
||
}
|
||
normalize();
|
||
}
|
||
/**
|
||
* Calculates the value of this <code>Real</code> <i>AND NOT</i>
|
||
* <code>a</code>. The opeation is read as "bit clear".
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>See {@link #and(Real)} for an explanation of the
|
||
* interpretation of a <code>Real</code> in bitwise operations.
|
||
* This method calculates a negative value if and only
|
||
* if this is negative and not <code>a</code> is negative.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>int</code><i> code:</i></td><td>
|
||
* <code>this &= ~a;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 1.5
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument
|
||
*/
|
||
public void bic(Real a) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (a.exponent == 0 && a.mantissa == 0))
|
||
return;
|
||
if ((this.exponent < 0 && this.mantissa == 0) || (a.exponent < 0 && a.mantissa == 0)) {
|
||
if (!(this.exponent < 0 && this.mantissa == 0)) {
|
||
if ((this.sign!=0))
|
||
if ((a.sign!=0))
|
||
makeInfinity(0);
|
||
else
|
||
makeInfinity(1);
|
||
} else if ((a.sign!=0)) {
|
||
if ((a.exponent < 0 && a.mantissa == 0))
|
||
makeInfinity(0);
|
||
else
|
||
makeZero();
|
||
}
|
||
return;
|
||
}
|
||
int shift = exponent-a.exponent;
|
||
if (shift>=64 || (shift<=-64 && (this.sign==0)))
|
||
return;
|
||
long m = a.mantissa;
|
||
if ((a.sign!=0))
|
||
m = -m;
|
||
if ((this.sign!=0))
|
||
mantissa = -mantissa;
|
||
if (shift<0) {
|
||
if ((this.sign!=0)) {
|
||
if (shift<=-64)
|
||
mantissa = ~m;
|
||
else
|
||
mantissa = (mantissa>>(-shift)) & ~m;
|
||
exponent = a.exponent;
|
||
} else
|
||
mantissa &= ~(m<<(-shift));
|
||
} else
|
||
mantissa &= ~(m>>shift);
|
||
sign = 0;
|
||
if (mantissa < 0) {
|
||
mantissa = -mantissa;
|
||
sign = 1;
|
||
}
|
||
normalize();
|
||
}
|
||
private int compare(int a) {
|
||
tmp0.assign(a);
|
||
return compare(tmp0);
|
||
}
|
||
/**
|
||
* Calculates the square root of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#sqrt(double) sqrt}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 19
|
||
* </td></tr></table>
|
||
*/
|
||
public void sqrt() {
|
||
/*
|
||
* Adapted from:
|
||
* Cephes Math Library Release 2.2: December, 1990
|
||
* Copyright 1984, 1990 by Stephen L. Moshier
|
||
*
|
||
* sqrtl.c
|
||
*
|
||
* long double sqrtl(long double x);
|
||
*/
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return;
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
sign=0;
|
||
return;
|
||
}
|
||
if ((this.sign!=0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0))
|
||
return;
|
||
// Save X
|
||
{ recipTmp.mantissa = this.mantissa; recipTmp.exponent = this.exponent; recipTmp.sign = this.sign; };
|
||
// normalize to range [0.5, 1)
|
||
int e = exponent-0x3fffffff;
|
||
exponent = 0x3fffffff;
|
||
// quadratic approximation, relative error 6.45e-4
|
||
{ recipTmp2.mantissa = this.mantissa; recipTmp2.exponent = this.exponent; recipTmp2.sign = this.sign; };
|
||
{ sqrtTmp.sign=(byte)1; sqrtTmp.exponent=0x3ffffffd; sqrtTmp.mantissa=0x68a7e193370ff21bL; };//-0.2044058315473477195990
|
||
mul(sqrtTmp);
|
||
{ sqrtTmp.sign=(byte)0; sqrtTmp.exponent=0x3fffffff; sqrtTmp.mantissa=0x71f1e120690deae8L; };//0.89019407351052789754347
|
||
add(sqrtTmp);
|
||
mul(recipTmp2);
|
||
{ sqrtTmp.sign=(byte)0; sqrtTmp.exponent=0x3ffffffe; sqrtTmp.mantissa=0x5045ee6baf28677aL; };//0.31356706742295303132394
|
||
add(sqrtTmp);
|
||
// adjust for odd powers of 2
|
||
if ((e&1) != 0)
|
||
mul(SQRT2);
|
||
// calculate exponent
|
||
exponent += e>>1;
|
||
// Newton iteratios:
|
||
// Yn+1 = (Yn + X/Yn)/2
|
||
for (int i=0; i<3; i++) {
|
||
{ recipTmp2.mantissa = recipTmp.mantissa; recipTmp2.exponent = recipTmp.exponent; recipTmp2.sign = recipTmp.sign; };
|
||
recipTmp2.div(this);
|
||
add(recipTmp2);
|
||
scalbn(-1);
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the reciprocal square root of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = 1/Math.{@link Math#sqrt(double) sqrt}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 21
|
||
* </td></tr></table>
|
||
*/
|
||
public void rsqrt() {
|
||
sqrt();
|
||
recip();
|
||
}
|
||
/**
|
||
* Calculates the cube root of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* The cube root of a negative value is the negative of the cube
|
||
* root of that value's magnitude.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#cbrt(double) cbrt}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 32
|
||
* </td></tr></table>
|
||
*/
|
||
public void cbrt() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
byte s = sign;
|
||
sign = 0;
|
||
// Calculates recipocal cube root of normalized Real,
|
||
// not zero, nan or infinity
|
||
final long start = 0x5120000000000000L;
|
||
// Save -A
|
||
{ recipTmp.mantissa = this.mantissa; recipTmp.exponent = this.exponent; recipTmp.sign = this.sign; };
|
||
recipTmp.neg();
|
||
// First establish approximate result
|
||
mantissa = start-(mantissa>>>2);
|
||
int expRmd = exponent==0 ? 2 : (exponent-1)%3;
|
||
exponent = 0x40000000-(exponent-0x40000000-expRmd)/3;
|
||
normalize();
|
||
if (expRmd>0) {
|
||
{ recipTmp2.sign=(byte)0; recipTmp2.exponent=0x3fffffff; recipTmp2.mantissa=0x6597fa94f5b8f20bL; }; // cbrt(1/2)
|
||
mul(recipTmp2);
|
||
if (expRmd>1)
|
||
mul(recipTmp2);
|
||
}
|
||
// Now perform Newton-Raphson iteration
|
||
// Xn+1 = (4*Xn - A*Xn**4)/3
|
||
for (int i=0; i<4; i++) {
|
||
{ recipTmp2.mantissa = this.mantissa; recipTmp2.exponent = this.exponent; recipTmp2.sign = this.sign; };
|
||
sqr();
|
||
sqr();
|
||
mul(recipTmp);
|
||
recipTmp2.scalbn(2);
|
||
add(recipTmp2);
|
||
mul(THIRD);
|
||
}
|
||
recip();
|
||
if (!(this.exponent < 0 && this.mantissa != 0))
|
||
sign = s;
|
||
}
|
||
/**
|
||
* Calculates the n'th root of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* For odd integer n, the n'th root of a negative value is the
|
||
* negative of the n'th root of that value's magnitude.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#pow(double,double)
|
||
* pow}(this,1/a);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 110
|
||
* </td></tr></table>
|
||
*
|
||
* @param n the <code>Real</code> argument.
|
||
*/
|
||
public void nroot(Real n) {
|
||
if ((n.exponent < 0 && n.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if (n.compare(THREE)==0) {
|
||
cbrt(); // Most probable application of nroot...
|
||
return;
|
||
} else if (n.compare(TWO)==0) {
|
||
sqrt(); // Also possible, should be optimized like this
|
||
return;
|
||
}
|
||
boolean negative = false;
|
||
if ((this.sign!=0) && n.isIntegral() && n.isOdd()) {
|
||
negative = true;
|
||
abs();
|
||
}
|
||
{ tmp2.mantissa = n.mantissa; tmp2.exponent = n.exponent; tmp2.sign = n.sign; }; // Copy to temporary location in case of x.nroot(x)
|
||
tmp2.recip();
|
||
pow(tmp2);
|
||
if (negative)
|
||
neg();
|
||
}
|
||
/**
|
||
* Calculates <code>sqrt(this*this+a*a)</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#hypot(double,double)
|
||
* hypot}(this,a);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 24
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument.
|
||
*/
|
||
public void hypot(Real a) {
|
||
{ tmp1.mantissa = a.mantissa; tmp1.exponent = a.exponent; tmp1.sign = a.sign; }; // Copy to temporary location in case of x.hypot(x)
|
||
tmp1.sqr();
|
||
sqr();
|
||
add(tmp1);
|
||
sqrt();
|
||
}
|
||
private void exp2Internal(long extra) {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return;
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
if ((this.sign!=0))
|
||
makeZero(0);
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
{ this.mantissa = ONE.mantissa; this.exponent = ONE.exponent; this.sign = ONE.sign; };
|
||
return;
|
||
}
|
||
// Extract integer part
|
||
{ expTmp.mantissa = this.mantissa; expTmp.exponent = this.exponent; expTmp.sign = this.sign; };
|
||
expTmp.add(HALF);
|
||
expTmp.floor();
|
||
int exp = expTmp.toInteger();
|
||
if (exp > 0x40000000) {
|
||
makeInfinity(sign);
|
||
return;
|
||
}
|
||
if (exp < -0x40000000) {
|
||
makeZero(sign);
|
||
return;
|
||
}
|
||
// Subtract integer part (this is where we need the extra accuracy)
|
||
expTmp.neg();
|
||
add128(extra,expTmp,0);
|
||
/*
|
||
* Adapted from:
|
||
* Cephes Math Library Release 2.7: May, 1998
|
||
* Copyright 1984, 1991, 1998 by Stephen L. Moshier
|
||
*
|
||
* exp2l.c
|
||
*
|
||
* long double exp2l(long double x);
|
||
*/
|
||
// Now -0.5<X<0.5
|
||
// rational approximation
|
||
// exp2(x) = 1 + 2x P(x<>)/(Q(x<>) - x P(x<>))
|
||
{ expTmp2.mantissa = this.mantissa; expTmp2.exponent = this.exponent; expTmp2.sign = this.sign; };
|
||
expTmp2.sqr();
|
||
// P(x<>)
|
||
{ expTmp.sign=(byte)0; expTmp.exponent=0x40000005; expTmp.mantissa=0x793ace15b56b7fecL; };//60.614853552242266094567
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x4000000e; expTmp3.mantissa=0x764ef8cf96e29a13L; };//30286.971917562792508623
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000014; expTmp3.mantissa=0x7efa0173e820bf60L; };//2080384.3631901852422887
|
||
expTmp.add(expTmp3);
|
||
mul(expTmp);
|
||
// Q(x<>)
|
||
expTmp.assign(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x4000000a; expTmp3.mantissa=0x6d549a6b4dc9abadL; };//1749.2876999891839021063
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000012; expTmp3.mantissa=0x5002d27836ba71c6L; };//327725.15434906797273099
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000016; expTmp3.mantissa=0x5b98206867dd59bfL; };//6002720.4078348487957118
|
||
expTmp.add(expTmp3);
|
||
expTmp.sub(this);
|
||
div(expTmp);
|
||
scalbn(1);
|
||
add(ONE);
|
||
// Scale by power of 2
|
||
scalbn(exp);
|
||
}
|
||
/**
|
||
* Calculates <i>e</i> raised to the power of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#exp(double) exp}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 31
|
||
* </td></tr></table>
|
||
*/
|
||
public void exp() {
|
||
{ expTmp.sign=(byte)0; expTmp.exponent=0x40000000; expTmp.mantissa=0x5c551d94ae0bf85dL; }; // log2(e)
|
||
long extra = mul128(0,expTmp,0xdf43ff68348e9f44L);
|
||
exp2Internal(extra);
|
||
}
|
||
/**
|
||
* Calculates 2 raised to the power of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#exp(double) exp}(this *
|
||
* Math.{@link Math#log(double) log}(2));</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 27
|
||
* </td></tr></table>
|
||
*/
|
||
public void exp2() {
|
||
exp2Internal(0);
|
||
}
|
||
/**
|
||
* Calculates 10 raised to the power of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#exp(double) exp}(this *
|
||
* Math.{@link Math#log(double) log}(10));</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 31
|
||
* </td></tr></table>
|
||
*/
|
||
public void exp10() {
|
||
{ expTmp.sign=(byte)0; expTmp.exponent=0x40000001; expTmp.mantissa=0x6a4d3c25e68dc57fL; }; // log2(10)
|
||
long extra = mul128(0,expTmp,0x2495fb7fa6d7eda6L);
|
||
exp2Internal(extra);
|
||
}
|
||
private int lnInternal()
|
||
{
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return 0;
|
||
if ((this.sign!=0)) {
|
||
makeNan();
|
||
return 0;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
makeInfinity(1);
|
||
return 0;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0))
|
||
return 0;
|
||
/*
|
||
* Adapted from:
|
||
* Cephes Math Library Release 2.7: May, 1998
|
||
* Copyright 1984, 1990, 1998 by Stephen L. Moshier
|
||
*
|
||
* logl.c
|
||
*
|
||
* long double logl(long double x);
|
||
*/
|
||
// normalize to range [0.5, 1)
|
||
int e = exponent-0x3fffffff;
|
||
exponent = 0x3fffffff;
|
||
// rational appriximation
|
||
// log(1+x) = x - x<>/2 + x<> P(x)/Q(x)
|
||
if (this.compare(SQRT1_2) < 0) {
|
||
e--;
|
||
exponent++;
|
||
}
|
||
sub(ONE);
|
||
{ expTmp2.mantissa = this.mantissa; expTmp2.exponent = this.exponent; expTmp2.sign = this.sign; };
|
||
// P(x)
|
||
{ this.sign=(byte)0; this.exponent=0x3ffffff1; this.mantissa=0x5ef0258ace5728ddL; };//4.5270000862445199635215E-5
|
||
mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x3ffffffe; expTmp3.mantissa=0x7fa06283f86a0ce8L; };//0.4985410282319337597221
|
||
add(expTmp3);
|
||
mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000002; expTmp3.mantissa=0x69427d1bd3e94ca1L; };//6.5787325942061044846969
|
||
add(expTmp3);
|
||
mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000004; expTmp3.mantissa=0x77a5ce2e32e7256eL; };//29.911919328553073277375
|
||
add(expTmp3);
|
||
mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000005; expTmp3.mantissa=0x79e63ae1b0cd4222L; };//60.949667980987787057556
|
||
add(expTmp3);
|
||
mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000005; expTmp3.mantissa=0x7239d65d1e6840d6L; };//57.112963590585538103336
|
||
add(expTmp3);
|
||
mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000004; expTmp3.mantissa=0x502880b6660c265fL; };//20.039553499201281259648
|
||
add(expTmp3);
|
||
// Q(x)
|
||
{ expTmp.mantissa = expTmp2.mantissa; expTmp.exponent = expTmp2.exponent; expTmp.sign = expTmp2.sign; };
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000003; expTmp3.mantissa=0x7880d67a40f8dc5cL; };//15.062909083469192043167
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000006; expTmp3.mantissa=0x530c2d4884d25e18L; };//83.047565967967209469434
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000007; expTmp3.mantissa=0x6ee19643f3ed5776L; };//221.76239823732856465394
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000008; expTmp3.mantissa=0x4d465177242295efL; };//309.09872225312059774938
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000007; expTmp3.mantissa=0x6c36c4f923819890L; };//216.42788614495947685003
|
||
expTmp.add(expTmp3);
|
||
expTmp.mul(expTmp2);
|
||
{ expTmp3.sign=(byte)0; expTmp3.exponent=0x40000005; expTmp3.mantissa=0x783cc111991239a3L; };//60.118660497603843919306
|
||
expTmp.add(expTmp3);
|
||
div(expTmp);
|
||
{ expTmp3.mantissa = expTmp2.mantissa; expTmp3.exponent = expTmp2.exponent; expTmp3.sign = expTmp2.sign; };
|
||
expTmp3.sqr();
|
||
mul(expTmp3);
|
||
mul(expTmp2);
|
||
expTmp3.scalbn(-1);
|
||
sub(expTmp3);
|
||
add(expTmp2);
|
||
return e;
|
||
}
|
||
/**
|
||
* Calculates the natural logarithm (base-<i>e</i>) of this
|
||
* <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#log(double) log}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 51
|
||
* </td></tr></table>
|
||
*/
|
||
public void ln() {
|
||
int exp = lnInternal();
|
||
expTmp.assign(exp);
|
||
expTmp.mul(LN2);
|
||
add(expTmp);
|
||
}
|
||
/**
|
||
* Calculates the base-2 logarithm of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#log(double) log}(this)/Math.{@link
|
||
* Math#log(double) log}(2);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 51
|
||
* </td></tr></table>
|
||
*/
|
||
public void log2() {
|
||
int exp = lnInternal();
|
||
mul(LOG2E);
|
||
add(exp);
|
||
}
|
||
/**
|
||
* Calculates the base-10 logarithm of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#log10(double) log10}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 53
|
||
* </td></tr></table>
|
||
*/
|
||
public void log10() {
|
||
int exp = lnInternal();
|
||
expTmp.assign(exp);
|
||
expTmp.mul(LN2);
|
||
add(expTmp);
|
||
mul(LOG10E);
|
||
}
|
||
/**
|
||
* Calculates the closest power of 10 that is less than or equal to this
|
||
* <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* The base-10 exponent of the result is returned.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>int exp = (int)(Math.{@link Math#floor(double)
|
||
* floor}(Math.{@link Math#log10(double) log10}(this)));
|
||
* <br>this = Math.{@link Math#pow(double,double) pow}(10, exp);<br>
|
||
* return exp;</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 3.6
|
||
* </td></tr></table>
|
||
*
|
||
* @return the base-10 exponent
|
||
*/
|
||
public int lowPow10() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return 0;
|
||
{ tmp2.mantissa = this.mantissa; tmp2.exponent = this.exponent; tmp2.sign = this.sign; };
|
||
// Approximate log10 using exponent only
|
||
int e = exponent - 0x40000000;
|
||
if (e<0) // it's important to achieve floor(exponent*ln2/ln10)
|
||
e = -(int)(((-e)*0x4d104d43L+((1L<<32)-1)) >> 32);
|
||
else
|
||
e = (int)(e*0x4d104d43L >> 32);
|
||
// Now, e < log10(this) < e+1
|
||
{ this.mantissa = TEN.mantissa; this.exponent = TEN.exponent; this.sign = TEN.sign; };
|
||
pow(e);
|
||
if ((this.exponent == 0 && this.mantissa == 0)) { // A *really* small number, then
|
||
{ tmp3.mantissa = TEN.mantissa; tmp3.exponent = TEN.exponent; tmp3.sign = TEN.sign; };
|
||
tmp3.pow(e+1);
|
||
} else {
|
||
{ tmp3.mantissa = this.mantissa; tmp3.exponent = this.exponent; tmp3.sign = this.sign; };
|
||
tmp3.mul10();
|
||
}
|
||
if (tmp3.compare(tmp2) <= 0) {
|
||
// First estimate of log10 was too low
|
||
e++;
|
||
{ this.mantissa = tmp3.mantissa; this.exponent = tmp3.exponent; this.sign = tmp3.sign; };
|
||
}
|
||
return e;
|
||
}
|
||
/**
|
||
* Calculates the value of this <code>Real</code> raised to the power of
|
||
* <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p> Special cases:
|
||
* <ul>
|
||
* <li> if a is 0.0 or -0.0 then result is 1.0
|
||
* <li> if a is NaN then result is NaN
|
||
* <li> if this is NaN and a is not zero then result is NaN
|
||
* <li> if a is 1.0 then result is this
|
||
* <li> if |this| > 1.0 and a is +Infinity then result is +Infinity
|
||
* <li> if |this| < 1.0 and a is -Infinity then result is +Infinity
|
||
* <li> if |this| > 1.0 and a is -Infinity then result is +0
|
||
* <li> if |this| < 1.0 and a is +Infinity then result is +0
|
||
* <li> if |this| = 1.0 and a is <20>Infinity then result is NaN
|
||
* <li> if this = +0 and a > 0 then result is +0
|
||
* <li> if this = +0 and a < 0 then result is +Inf
|
||
* <li> if this = -0 and a > 0, and odd integer then result is -0
|
||
* <li> if this = -0 and a < 0, and odd integer then result is -Inf
|
||
* <li> if this = -0 and a > 0, not odd integer then result is +0
|
||
* <li> if this = -0 and a < 0, not odd integer then result is +Inf
|
||
* <li> if this = +Inf and a > 0 then result is +Inf
|
||
* <li> if this = +Inf and a < 0 then result is +0
|
||
* <li> if this = -Inf and a not integer then result is NaN
|
||
* <li> if this = -Inf and a > 0, and odd integer then result is -Inf
|
||
* <li> if this = -Inf and a > 0, not odd integer then result is +Inf
|
||
* <li> if this = -Inf and a < 0, and odd integer then result is -0
|
||
* <li> if this = -Inf and a < 0, not odd integer then result is +0
|
||
* <li> if this < 0 and a not integer then result is NaN
|
||
* <li> if this < 0 and a odd integer then result is -(|this|<sup>a</sup>)
|
||
* <li> if this < 0 and a not odd integer then result is |this|<sup>a</sup>
|
||
* <li> else result is exp(ln(this)*a)
|
||
* </ul>
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#pow(double,double) pow}(this, a);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 110
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the <code>Real</code> argument.
|
||
*/
|
||
public void pow(Real a) {
|
||
if ((a.exponent == 0 && a.mantissa == 0)) {
|
||
{ this.mantissa = ONE.mantissa; this.exponent = ONE.exponent; this.sign = ONE.sign; };
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (a.exponent < 0 && a.mantissa != 0)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if (a.compare(ONE)==0)
|
||
return;
|
||
if ((a.exponent < 0 && a.mantissa == 0)) {
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.abs();
|
||
int test = tmp1.compare(ONE);
|
||
if (test>0) {
|
||
if ((a.sign==0))
|
||
makeInfinity(0);
|
||
else
|
||
makeZero();
|
||
} else if (test<0) {
|
||
if ((a.sign!=0))
|
||
makeInfinity(0);
|
||
else
|
||
makeZero();
|
||
} else {
|
||
makeNan();
|
||
}
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
if ((this.sign==0)) {
|
||
if ((a.sign==0))
|
||
makeZero();
|
||
else
|
||
makeInfinity(0);
|
||
} else {
|
||
if (a.isIntegral() && a.isOdd()) {
|
||
if ((a.sign==0))
|
||
makeZero(1);
|
||
else
|
||
makeInfinity(1);
|
||
} else {
|
||
if ((a.sign==0))
|
||
makeZero();
|
||
else
|
||
makeInfinity(0);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
if ((this.sign==0)) {
|
||
if ((a.sign==0))
|
||
makeInfinity(0);
|
||
else
|
||
makeZero();
|
||
} else {
|
||
if (a.isIntegral()) {
|
||
if (a.isOdd()) {
|
||
if ((a.sign==0))
|
||
makeInfinity(1);
|
||
else
|
||
makeZero(1);
|
||
} else {
|
||
if ((a.sign==0))
|
||
makeInfinity(0);
|
||
else
|
||
makeZero();
|
||
}
|
||
} else {
|
||
makeNan();
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
if (a.isIntegral() && a.exponent <= 0x4000001e) {
|
||
pow(a.toInteger());
|
||
return;
|
||
}
|
||
byte s=0;
|
||
if ((this.sign!=0)) {
|
||
if (a.isIntegral()) {
|
||
if (a.isOdd())
|
||
s = 1;
|
||
} else {
|
||
makeNan();
|
||
return;
|
||
}
|
||
sign = 0;
|
||
}
|
||
{ tmp1.mantissa = a.mantissa; tmp1.exponent = a.exponent; tmp1.sign = a.sign; };
|
||
if (tmp1.exponent <= 0x4000001e) {
|
||
// For increased accuracy, exponentiate with integer part of
|
||
// exponent by successive squaring
|
||
// (I really don't know why this works)
|
||
{ tmp2.mantissa = tmp1.mantissa; tmp2.exponent = tmp1.exponent; tmp2.sign = tmp1.sign; };
|
||
tmp2.floor();
|
||
{ tmp3.mantissa = this.mantissa; tmp3.exponent = this.exponent; tmp3.sign = this.sign; };
|
||
tmp3.pow(tmp2.toInteger());
|
||
tmp1.sub(tmp2);
|
||
} else {
|
||
{ tmp3.mantissa = ONE.mantissa; tmp3.exponent = ONE.exponent; tmp3.sign = ONE.sign; };
|
||
}
|
||
// Do log2 and maintain accuracy
|
||
int e = lnInternal();
|
||
{ tmp2.sign=(byte)0; tmp2.exponent=0x40000000; tmp2.mantissa=0x5c551d94ae0bf85dL; }; // log2(e)
|
||
long extra = mul128(0,tmp2,0xdf43ff68348e9f44L);
|
||
tmp2.assign(e);
|
||
extra = add128(extra,tmp2,0);
|
||
// Do exp2 of this multiplied by (fractional part of) exponent
|
||
extra = tmp1.mul128(0,this,extra);
|
||
tmp1.exp2Internal(extra);
|
||
{ this.mantissa = tmp1.mantissa; this.exponent = tmp1.exponent; this.sign = tmp1.sign; };
|
||
mul(tmp3);
|
||
if (!(this.exponent < 0 && this.mantissa != 0))
|
||
sign = s;
|
||
}
|
||
/**
|
||
* Calculates the value of this <code>Real</code> raised to the power of
|
||
* the integer <code>a</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#pow(double,double) pow}(this, a);</code>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 84
|
||
* </td></tr></table>
|
||
*
|
||
* @param a the integer argument.
|
||
*/
|
||
public void pow(int a) {
|
||
// Calculate power of integer by successive squaring
|
||
boolean recp=false;
|
||
if (a < 0) {
|
||
a = -a; // Also works for 0x80000000
|
||
recp = true;
|
||
}
|
||
long extra = 0, expTmpExtra = 0;
|
||
{ expTmp.mantissa = this.mantissa; expTmp.exponent = this.exponent; expTmp.sign = this.sign; };
|
||
{ this.mantissa = ONE.mantissa; this.exponent = ONE.exponent; this.sign = ONE.sign; };
|
||
for (; a!=0; a>>>=1) {
|
||
if ((a & 1) != 0)
|
||
extra = mul128(extra,expTmp,expTmpExtra);
|
||
expTmpExtra = expTmp.mul128(expTmpExtra,expTmp,expTmpExtra);
|
||
}
|
||
if (recp)
|
||
extra = recip128(extra);
|
||
roundFrom128(extra);
|
||
}
|
||
private void sinInternal() {
|
||
/*
|
||
* Adapted from:
|
||
* Cephes Math Library Release 2.7: May, 1998
|
||
* Copyright 1985, 1990, 1998 by Stephen L. Moshier
|
||
*
|
||
* sinl.c
|
||
*
|
||
* long double sinl(long double x);
|
||
*/
|
||
// X<PI/4
|
||
// polynomial approximation
|
||
// sin(x) = x + x<> P(x<>)
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
{ tmp2.mantissa = this.mantissa; tmp2.exponent = this.exponent; tmp2.sign = this.sign; };
|
||
tmp2.sqr();
|
||
{ this.sign=(byte)1; this.exponent=0x3fffffd7; this.mantissa=0x6aa891c4f0eb2713L; };//-7.578540409484280575629E-13
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x3fffffdf; tmp3.mantissa=0x58482311f383326cL; };//1.6058363167320443249231E-10
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3fffffe6; tmp3.mantissa=0x6b9914a35f9a00d8L; };//-2.5052104881870868784055E-8
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x3fffffed; tmp3.mantissa=0x5c778e94cc22e47bL; };//2.7557319214064922217861E-6
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3ffffff3; tmp3.mantissa=0x680680680629b28aL; };//-1.9841269841254799668344E-4
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x3ffffff9; tmp3.mantissa=0x4444444444442b4dL; };//8.3333333333333225058715E-3
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3ffffffd; tmp3.mantissa=0x555555555555554cL; };//-1.6666666666666666640255E-1
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
mul(tmp1);
|
||
add(tmp1);
|
||
}
|
||
private void cosInternal() {
|
||
/*
|
||
* Adapted from:
|
||
* Cephes Math Library Release 2.7: May, 1998
|
||
* Copyright 1985, 1990, 1998 by Stephen L. Moshier
|
||
*
|
||
* sinl.c
|
||
*
|
||
* long double cosl(long double x);
|
||
*/
|
||
// X<PI/4
|
||
// polynomial approximation
|
||
// cos(x) = 1 - x<>/2 + x**4 Q(x<>)
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
{ tmp2.mantissa = this.mantissa; tmp2.exponent = this.exponent; tmp2.sign = this.sign; };
|
||
tmp2.sqr();
|
||
{ this.sign=(byte)0; this.exponent=0x3fffffd3; this.mantissa=0x6aaf461d37ccba1bL; };//4.7377507964246204691685E-14
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3fffffdb; tmp3.mantissa=0x64e4c907ac7a179bL; };//-1.147028484342535976567E-11
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x3fffffe3; tmp3.mantissa=0x47bb632432cf29a8L; };//2.0876754287081521758361E-9
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3fffffea; tmp3.mantissa=0x49f93edd7ae32696L; };//-2.7557319214999787979814E-7
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x3ffffff0; tmp3.mantissa=0x68068068063329f7L; };//2.4801587301570552304991E-5L
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3ffffff6; tmp3.mantissa=0x5b05b05b05b03db3L; };//-1.3888888888888872993737E-3
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x3ffffffb; tmp3.mantissa=0x555555555555554dL; };//4.1666666666666666609054E-2
|
||
add(tmp3);
|
||
mul(tmp2);
|
||
sub(HALF);
|
||
mul(tmp2);
|
||
add(ONE);
|
||
}
|
||
/**
|
||
* Calculates the trigonometric sine of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* The input value is treated as an angle measured in radians.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#sin(double) sin}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 28
|
||
* </td></tr></table>
|
||
*/
|
||
public void sin() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0)) {
|
||
if (!(this.exponent == 0 && this.mantissa == 0))
|
||
makeNan();
|
||
return;
|
||
}
|
||
// Since sin(-x) = -sin(x) we can make sure that x > 0
|
||
boolean negative = false;
|
||
if ((this.sign!=0)) {
|
||
abs();
|
||
negative = true;
|
||
}
|
||
// Then reduce the argument to the range of 0 < x < pi*2
|
||
if (this.compare(PI2) > 0)
|
||
modInternal(PI2,0x62633145c06e0e69L);
|
||
// Since sin(pi*2 - x) = -sin(x) we can reduce the range 0 < x < pi
|
||
if (this.compare(PI) > 0) {
|
||
sub(PI2);
|
||
neg();
|
||
negative = !negative;
|
||
}
|
||
// Since sin(x) = sin(pi - x) we can reduce the range to 0 < x < pi/2
|
||
if (this.compare(PI_2) > 0) {
|
||
sub(PI);
|
||
neg();
|
||
}
|
||
// Since sin(x) = cos(pi/2 - x) we can reduce the range to 0 < x < pi/4
|
||
if (this.compare(PI_4) > 0) {
|
||
sub(PI_2);
|
||
neg();
|
||
cosInternal();
|
||
} else {
|
||
sinInternal();
|
||
}
|
||
if (negative)
|
||
neg();
|
||
if ((this.exponent == 0 && this.mantissa == 0))
|
||
abs(); // Remove confusing "-"
|
||
}
|
||
/**
|
||
* Calculates the trigonometric cosine of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* The input value is treated as an angle measured in radians.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#cos(double) cos}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 1 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 37
|
||
* </td></tr></table>
|
||
*/
|
||
public void cos() {
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
{ this.mantissa = ONE.mantissa; this.exponent = ONE.exponent; this.sign = ONE.sign; };
|
||
return;
|
||
}
|
||
if ((this.sign!=0))
|
||
abs();
|
||
if (this.compare(PI_4) < 0) {
|
||
cosInternal();
|
||
} else {
|
||
add(PI_2);
|
||
sin();
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the trigonometric tangent of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* The input value is treated as an angle measured in radians.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#tan(double) tan}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 70
|
||
* </td></tr></table>
|
||
*/
|
||
public void tan() {
|
||
{ tmp4.mantissa = this.mantissa; tmp4.exponent = this.exponent; tmp4.sign = this.sign; };
|
||
tmp4.cos();
|
||
sin();
|
||
div(tmp4);
|
||
}
|
||
/**
|
||
* Calculates the trigonometric arc sine of this <code>Real</code>,
|
||
* in the range -π/2 to π/2.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#asin(double) asin}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 3 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 68
|
||
* </td></tr></table>
|
||
*/
|
||
public void asin() {
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
sqr();
|
||
neg();
|
||
add(ONE);
|
||
rsqrt();
|
||
mul(tmp1);
|
||
atan();
|
||
}
|
||
/**
|
||
* Calculates the trigonometric arc cosine of this <code>Real</code>,
|
||
* in the range 0.0 to π.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#acos(double) acos}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 67
|
||
* </td></tr></table>
|
||
*/
|
||
public void acos() {
|
||
boolean negative = (this.sign!=0);
|
||
abs();
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
sqr();
|
||
neg();
|
||
add(ONE);
|
||
sqrt();
|
||
div(tmp1);
|
||
atan();
|
||
if (negative) {
|
||
neg();
|
||
add(PI);
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the trigonometric arc tangent of this <code>Real</code>,
|
||
* in the range -π/2 to π/2.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#atan(double) atan}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 37
|
||
* </td></tr></table>
|
||
*/
|
||
public void atan() {
|
||
/*
|
||
* Adapted from:
|
||
* Cephes Math Library Release 2.7: May, 1998
|
||
* Copyright 1984, 1990, 1998 by Stephen L. Moshier
|
||
*
|
||
* atanl.c
|
||
*
|
||
* long double atanl(long double x);
|
||
*/
|
||
if ((this.exponent == 0 && this.mantissa == 0) || (this.exponent < 0 && this.mantissa != 0))
|
||
return;
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
byte s = sign;
|
||
{ this.mantissa = PI_2.mantissa; this.exponent = PI_2.exponent; this.sign = PI_2.sign; };
|
||
sign = s;
|
||
return;
|
||
}
|
||
byte s = sign;
|
||
sign = 0;
|
||
// range reduction
|
||
boolean addPI_2 = false;
|
||
boolean addPI_4 = false;
|
||
{ tmp1.mantissa = SQRT2.mantissa; tmp1.exponent = SQRT2.exponent; tmp1.sign = SQRT2.sign; };
|
||
tmp1.add(ONE);
|
||
if (this.compare(tmp1) > 0) {
|
||
addPI_2 = true;
|
||
recip();
|
||
neg();
|
||
} else {
|
||
tmp1.sub(TWO);
|
||
if (this.compare(tmp1) > 0) {
|
||
addPI_4 = true;
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.add(ONE);
|
||
sub(ONE);
|
||
div(tmp1);
|
||
}
|
||
}
|
||
// Now |X|<sqrt(2)-1
|
||
// rational approximation
|
||
// atan(x) = x + x<> P(x<>)/Q(x<>)
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
{ tmp2.mantissa = this.mantissa; tmp2.exponent = this.exponent; tmp2.sign = this.sign; };
|
||
tmp2.sqr();
|
||
mul(tmp2);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3fffffff; tmp3.mantissa=0x6f2f89336729c767L; };//-0.8686381817809218753544
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)1; tmp4.exponent=0x40000003; tmp4.mantissa=0x7577d35fd03083f3L; };//-14.683508633175792446076
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)1; tmp4.exponent=0x40000005; tmp4.mantissa=0x7ff42abff948a9f7L; };//-63.976888655834347413154
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)1; tmp4.exponent=0x40000006; tmp4.mantissa=0x63fd1f9f76d37cebL; };//-99.988763777265819915721
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)1; tmp4.exponent=0x40000005; tmp4.mantissa=0x65c9c9b0b55e5b62L; };//-50.894116899623603312185
|
||
tmp3.add(tmp4);
|
||
mul(tmp3);
|
||
{ tmp3.mantissa = tmp2.mantissa; tmp3.exponent = tmp2.exponent; tmp3.sign = tmp2.sign; };
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x40000004; tmp4.mantissa=0x5bed73b744a72a6aL; };//22.981886733594175366172
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x40000007; tmp4.mantissa=0x47fed7d13d233b5cL; };//143.99096122250781605352
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x40000008; tmp4.mantissa=0x5a5c35f774e071d5L; };//361.44079386152023162701
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x40000008; tmp4.mantissa=0x61e4d84c2853d5e0L; };//391.57570175111990631099
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp2);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x40000007; tmp4.mantissa=0x4c5757448806c48eL; };//152.68235069887081006606
|
||
tmp3.add(tmp4);
|
||
div(tmp3);
|
||
add(tmp1);
|
||
if (addPI_2)
|
||
add(PI_2);
|
||
if (addPI_4)
|
||
add(PI_4);
|
||
if (s != 0)
|
||
neg();
|
||
}
|
||
/**
|
||
* Calculates the trigonometric arc tangent of this
|
||
* <code>Real</code> divided by <code>x</code>, in the range -π
|
||
* to π. The signs of both arguments are used to determine the
|
||
* quadrant of the result. Replaces the contents of this
|
||
* <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#atan2(double,double)
|
||
* atan2}(this,x);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 48
|
||
* </td></tr></table>
|
||
*
|
||
* @param x the <code>Real</code> argument.
|
||
*/
|
||
public void atan2(Real x) {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (x.exponent < 0 && x.mantissa != 0) || ((this.exponent < 0 && this.mantissa == 0) && (x.exponent < 0 && x.mantissa == 0))) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0) && (x.exponent == 0 && x.mantissa == 0))
|
||
return;
|
||
byte s = sign;
|
||
byte s2 = x.sign;
|
||
sign = 0;
|
||
x.sign = 0;
|
||
div(x);
|
||
atan();
|
||
if (s2 != 0) {
|
||
neg();
|
||
add(PI);
|
||
}
|
||
sign = s;
|
||
}
|
||
/**
|
||
* Calculates the hyperbolic sine of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#sinh(double) sinh}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 67
|
||
* </td></tr></table>
|
||
*/
|
||
public void sinh() {
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.neg();
|
||
tmp1.exp();
|
||
exp();
|
||
sub(tmp1);
|
||
scalbn(-1);
|
||
}
|
||
/**
|
||
* Calculates the hyperbolic cosine of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#cosh(double) cosh}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 66
|
||
* </td></tr></table>
|
||
*/
|
||
public void cosh() {
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.neg();
|
||
tmp1.exp();
|
||
exp();
|
||
add(tmp1);
|
||
scalbn(-1);
|
||
}
|
||
/**
|
||
* Calculates the hyperbolic tangent of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#tanh(double) tanh}(this);</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 70
|
||
* </td></tr></table>
|
||
*/
|
||
public void tanh() {
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.neg();
|
||
tmp1.exp();
|
||
exp();
|
||
{ tmp2.mantissa = this.mantissa; tmp2.exponent = this.exponent; tmp2.sign = this.sign; };
|
||
tmp2.add(tmp1);
|
||
sub(tmp1);
|
||
div(tmp2);
|
||
}
|
||
/**
|
||
* Calculates the hyperbolic arc sine of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 77
|
||
* </td></tr></table>
|
||
*/
|
||
public void asinh() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
// Use symmetry to prevent underflow error for very large negative
|
||
// values
|
||
byte s = sign;
|
||
sign = 0;
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.sqr();
|
||
tmp1.add(ONE);
|
||
tmp1.sqrt();
|
||
add(tmp1);
|
||
ln();
|
||
if (!(this.exponent < 0 && this.mantissa != 0))
|
||
sign = s;
|
||
}
|
||
/**
|
||
* Calculates the hyperbolic arc cosine of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 75
|
||
* </td></tr></table>
|
||
*/
|
||
public void acosh() {
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.sqr();
|
||
tmp1.sub(ONE);
|
||
tmp1.sqrt();
|
||
add(tmp1);
|
||
ln();
|
||
}
|
||
/**
|
||
* Calculates the hyperbolic arc tangent of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 57
|
||
* </td></tr></table>
|
||
*/
|
||
public void atanh() {
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.neg();
|
||
tmp1.add(ONE);
|
||
add(ONE);
|
||
div(tmp1);
|
||
ln();
|
||
scalbn(-1);
|
||
}
|
||
/**
|
||
* Calculates the factorial of this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
* The definition is generalized to all real numbers (not only integers),
|
||
* by using the fact that <code>(n!)={@link #gamma() gamma}(n+1)</code>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 15 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 8-190
|
||
* </td></tr></table>
|
||
*/
|
||
public void fact() {
|
||
if (!(this.exponent >= 0))
|
||
return;
|
||
if (!this.isIntegral() || this.compare(ZERO)<0 || this.compare(200)>0)
|
||
{
|
||
// x<0, x>200 or not integer: fact(x) = gamma(x+1)
|
||
add(ONE);
|
||
gamma();
|
||
return;
|
||
}
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
{ this.mantissa = ONE.mantissa; this.exponent = ONE.exponent; this.sign = ONE.sign; };
|
||
while (tmp1.compare(ONE) > 0) {
|
||
mul(tmp1);
|
||
tmp1.sub(ONE);
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the gamma function for this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 100+ ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 190
|
||
* </td></tr></table>
|
||
*/
|
||
public void gamma() {
|
||
if (!(this.exponent >= 0))
|
||
return;
|
||
// x<0: gamma(-x) = -pi/(x*gamma(x)*sin(pi*x))
|
||
boolean negative = (this.sign!=0);
|
||
abs();
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
// x<n: gamma(x) = gamma(x+m)/x*(x+1)*(x+2)*...*(x+m-1)
|
||
// n=20
|
||
{ tmp2.mantissa = ONE.mantissa; tmp2.exponent = ONE.exponent; tmp2.sign = ONE.sign; };
|
||
boolean divide = false;
|
||
while (this.compare(20) < 0) {
|
||
divide = true;
|
||
tmp2.mul(this);
|
||
add(ONE);
|
||
}
|
||
// x>n: gamma(x) = exp((x-1/2)*ln(x) - x + ln(2*pi)/2 + 1/12x - 1/360x<30>
|
||
// + 1/1260x**5 - 1/1680x**7+1/1188x**9)
|
||
{ tmp3.mantissa = this.mantissa; tmp3.exponent = this.exponent; tmp3.sign = this.sign; }; // x
|
||
{ tmp4.mantissa = this.mantissa; tmp4.exponent = this.exponent; tmp4.sign = this.sign; };
|
||
tmp4.sqr(); // x<>
|
||
// (x-1/2)*ln(x)-x
|
||
ln(); { tmp5.mantissa = tmp3.mantissa; tmp5.exponent = tmp3.exponent; tmp5.sign = tmp3.sign; }; tmp5.sub(HALF); mul(tmp5); sub(tmp3);
|
||
// + ln(2*pi)/2
|
||
{ tmp5.sign=(byte)0; tmp5.exponent=0x3fffffff; tmp5.mantissa=0x759fc72192fad29aL; }; add(tmp5);
|
||
// + 1/12x
|
||
tmp5.assign( 12); tmp5.mul(tmp3); tmp5.recip(); add(tmp5); tmp3.mul(tmp4);
|
||
// - 1/360x<30>
|
||
tmp5.assign( 360); tmp5.mul(tmp3); tmp5.recip(); sub(tmp5); tmp3.mul(tmp4);
|
||
// + 1/1260x**5
|
||
tmp5.assign(1260); tmp5.mul(tmp3); tmp5.recip(); add(tmp5); tmp3.mul(tmp4);
|
||
// - 1/1680x**7
|
||
tmp5.assign(1680); tmp5.mul(tmp3); tmp5.recip(); sub(tmp5); tmp3.mul(tmp4);
|
||
// + 1/1188x**9
|
||
tmp5.assign(1188); tmp5.mul(tmp3); tmp5.recip(); add(tmp5);
|
||
exp();
|
||
if (divide)
|
||
div(tmp2);
|
||
if (negative) {
|
||
{ tmp5.mantissa = tmp1.mantissa; tmp5.exponent = tmp1.exponent; tmp5.sign = tmp1.sign; }; // sin() uses tmp1
|
||
// -pi/(x*gamma(x)*sin(pi*x))
|
||
mul(tmp5);
|
||
tmp5.scalbn(-1); tmp5.frac(); tmp5.mul(PI2); // Fixes integer inaccuracy
|
||
tmp5.sin(); mul(tmp5); recip(); mul(PI); neg();
|
||
}
|
||
}
|
||
private void erfc1Internal() {
|
||
// 3 5 7 9
|
||
// 2 / x x x x // erfc(x) = 1 - ------ | x - --- + ---- - ---- + ---- - ... |
|
||
// sqrt(pi)\ 3 2!*5 3!*7 4!*9 /
|
||
//
|
||
long extra=0,tmp1Extra,tmp2Extra,tmp3Extra,tmp4Extra;
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; }; tmp1Extra = 0;
|
||
{ tmp2.mantissa = this.mantissa; tmp2.exponent = this.exponent; tmp2.sign = this.sign; };
|
||
tmp2Extra = tmp2.mul128(0,tmp2,0);
|
||
tmp2.neg();
|
||
{ tmp3.mantissa = ONE.mantissa; tmp3.exponent = ONE.exponent; tmp3.sign = ONE.sign; }; tmp3Extra = 0;
|
||
int i=1;
|
||
do {
|
||
tmp1Extra = tmp1.mul128(tmp1Extra,tmp2,tmp2Extra);
|
||
tmp4.assign(i);
|
||
tmp3Extra = tmp3.mul128(tmp3Extra,tmp4,0);
|
||
tmp4.assign(2*i+1);
|
||
tmp4Extra = tmp4.mul128(0,tmp3,tmp3Extra);
|
||
tmp4Extra = tmp4.recip128(tmp4Extra);
|
||
tmp4Extra = tmp4.mul128(tmp4Extra,tmp1,tmp1Extra);
|
||
extra = add128(extra,tmp4,tmp4Extra);
|
||
i++;
|
||
} while (exponent - tmp4.exponent < 128);
|
||
{ tmp1.sign=(byte)1; tmp1.exponent=0x40000000; tmp1.mantissa=0x48375d410a6db446L; }; // -2/sqrt(pi)
|
||
extra = mul128(extra,tmp1,0xb8ea453fb5ff61a2L);
|
||
extra = add128(extra,ONE,0);
|
||
roundFrom128(extra);
|
||
}
|
||
private void erfc2Internal() {
|
||
// -x<> -1
|
||
// e x / 1 3 3*5 3*5*7 // erfc(x) = -------- | 1 - --- + ------ - ------ + ------ - ... |
|
||
// sqrt(pi) \ 2x<32> 2 3 4 /
|
||
// (2x<32>) (2x<32>) (2x<32>)
|
||
// Calculate iteration stop criteria
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.sqr();
|
||
{ tmp2.sign=(byte)0; tmp2.exponent=0x40000000; tmp2.mantissa=0x5c3811b4bfd0c8abL; }; // 1/0.694
|
||
tmp2.mul(tmp1);
|
||
tmp2.sub(HALF);
|
||
int digits = tmp2.toInteger(); // number of accurate digits = x*x/0.694-0.5
|
||
if (digits > 64)
|
||
digits = 64;
|
||
tmp1.scalbn(1);
|
||
int dxq = tmp1.toInteger()+1;
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
recip();
|
||
{ tmp2.mantissa = this.mantissa; tmp2.exponent = this.exponent; tmp2.sign = this.sign; };
|
||
{ tmp3.mantissa = this.mantissa; tmp3.exponent = this.exponent; tmp3.sign = this.sign; };
|
||
tmp3.sqr();
|
||
tmp3.neg();
|
||
tmp3.scalbn(-1);
|
||
{ this.mantissa = ONE.mantissa; this.exponent = ONE.exponent; this.sign = ONE.sign; };
|
||
{ tmp4.mantissa = ONE.mantissa; tmp4.exponent = ONE.exponent; tmp4.sign = ONE.sign; };
|
||
int i=1;
|
||
do {
|
||
tmp4.mul(2*i-1);
|
||
tmp4.mul(tmp3);
|
||
add(tmp4);
|
||
i++;
|
||
} while (tmp4.exponent-0x40000000>-(digits+2) && 2*i-1<dxq);
|
||
mul(tmp2);
|
||
tmp1.sqr();
|
||
tmp1.neg();
|
||
tmp1.exp();
|
||
mul(tmp1);
|
||
{ tmp1.sign=(byte)0; tmp1.exponent=0x3fffffff; tmp1.mantissa=0x48375d410a6db447L; }; // 1/sqrt(pi)
|
||
mul(tmp1);
|
||
}
|
||
/**
|
||
* Calculates the complementary error function for this <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>The complementary error function is defined as the integral from
|
||
* x to infinity of 2/√<span style="text-decoration:
|
||
* overline;">π</span> <3B><i>e</i><sup>-t<></sup> dt. It is
|
||
* related to the error function, <i>erf</i>, by the formula
|
||
* erfc(x)=1-erf(x).
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2<sup>19</sup> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 80-4900
|
||
* </td></tr></table>
|
||
*/
|
||
public void erfc() {
|
||
if ((this.exponent < 0 && this.mantissa != 0))
|
||
return;
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
{ this.mantissa = ONE.mantissa; this.exponent = ONE.exponent; this.sign = ONE.sign; };
|
||
return;
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0) || toInteger()>27281) {
|
||
if ((this.sign!=0)) {
|
||
{ this.mantissa = TWO.mantissa; this.exponent = TWO.exponent; this.sign = TWO.sign; };
|
||
} else
|
||
makeZero(0);
|
||
return;
|
||
}
|
||
byte s = sign;
|
||
sign = 0;
|
||
{ tmp1.sign=(byte)0; tmp1.exponent=0x40000002; tmp1.mantissa=0x570a3d70a3d70a3dL; }; // 5.44
|
||
if (this.lessThan(tmp1))
|
||
erfc1Internal();
|
||
else
|
||
erfc2Internal();
|
||
if (s != 0) {
|
||
neg();
|
||
add(TWO);
|
||
}
|
||
}
|
||
/**
|
||
* Calculates the inverse complementary error function for this
|
||
* <code>Real</code>.
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* 2<sup>19</sup> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 240-5100
|
||
* </td></tr></table>
|
||
*/
|
||
public void inverfc() {
|
||
if ((this.exponent < 0 && this.mantissa != 0) || (this.sign!=0) || this.greaterThan(TWO)) {
|
||
makeNan();
|
||
return;
|
||
}
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
makeInfinity(0);
|
||
return;
|
||
}
|
||
if (this.equalTo(TWO)) {
|
||
makeInfinity(1);
|
||
return;
|
||
}
|
||
int sign = ONE.compare(this);
|
||
if (sign==0) {
|
||
makeZero();
|
||
return;
|
||
}
|
||
if (sign<0) {
|
||
neg();
|
||
add(TWO);
|
||
}
|
||
// Using invphi to calculate inverfc, like this
|
||
// inverfc(x) = -invphi(x/2)/(sqrt(2))
|
||
scalbn(-1);
|
||
// Inverse Phi Algorithm (phi(Z)=P, so invphi(P)=Z)
|
||
// ------------------------------------------------
|
||
// Part 1: Numerical Approximation Method for Inverse Phi
|
||
// This accepts input of P and outputs approximate Z as Y
|
||
// Source:Odeh & Evans. 1974. AS 70. Applied Statistics.
|
||
// R = sqrt(Ln(1/(Q<>)))
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.ln();
|
||
tmp1.mul(-2);
|
||
tmp1.sqrt();
|
||
// Y = -(R+((((P4*R+P3)*R+P2)*R+P1)*R+P0)/((((Q4*R+Q3)*R*Q2)*R+Q1)*R+Q0))
|
||
{ tmp2.sign=(byte)1; tmp2.exponent=0x3ffffff1; tmp2.mantissa=0x5f22bb0fb4698674L; }; // P4=-0.0000453642210148
|
||
tmp2.mul(tmp1);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3ffffffa; tmp3.mantissa=0x53a731ce1ea0be15L; }; // P3=-0.0204231210245
|
||
tmp2.add(tmp3);
|
||
tmp2.mul(tmp1);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3ffffffe; tmp3.mantissa=0x579d2d719fc517f3L; }; // P2=-0.342242088547
|
||
tmp2.add(tmp3);
|
||
tmp2.mul(tmp1);
|
||
tmp2.add(-1); // P1=-1
|
||
tmp2.mul(tmp1);
|
||
{ tmp3.sign=(byte)1; tmp3.exponent=0x3ffffffe; tmp3.mantissa=0x527dd3193bc8dd4cL; }; // P0=-0.322232431088
|
||
tmp2.add(tmp3);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x3ffffff7; tmp3.mantissa=0x7e5b0f681d161e7dL; }; // Q4=0.0038560700634
|
||
tmp3.mul(tmp1);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x3ffffffc; tmp4.mantissa=0x6a05ccf9917da0a8L; }; // Q3=0.103537752850
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp1);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x3fffffff; tmp4.mantissa=0x43fb32c0d3c14ec4L; }; // Q2=0.531103462366
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp1);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x3fffffff; tmp4.mantissa=0x4b56a41226f4ba95L; }; // Q1=0.588581570495
|
||
tmp3.add(tmp4);
|
||
tmp3.mul(tmp1);
|
||
{ tmp4.sign=(byte)0; tmp4.exponent=0x3ffffffc; tmp4.mantissa=0x65bb9a7733dd5062L; }; // Q0=0.0993484626060
|
||
tmp3.add(tmp4);
|
||
tmp2.div(tmp3);
|
||
tmp1.add(tmp2);
|
||
tmp1.neg();
|
||
{ sqrtTmp.mantissa = tmp1.mantissa; sqrtTmp.exponent = tmp1.exponent; sqrtTmp.sign = tmp1.sign; }; // sqrtTmp and tmp5 not used by erfc() and exp()
|
||
// Part 2: Refine to accuracy of erfc Function
|
||
// This accepts inputs Y and P (from above) and outputs Z
|
||
// (Using Halley's third order method for finding roots of equations)
|
||
// Q = erfc(-Y/sqrt(2))/2-P
|
||
{ tmp5.mantissa = sqrtTmp.mantissa; tmp5.exponent = sqrtTmp.exponent; tmp5.sign = sqrtTmp.sign; };
|
||
tmp5.mul(SQRT1_2);
|
||
tmp5.neg();
|
||
tmp5.erfc();
|
||
tmp5.scalbn(-1);
|
||
tmp5.sub(this);
|
||
// R = Q*sqrt(2*pi)*e^(Y<>/2)
|
||
{ tmp3.mantissa = sqrtTmp.mantissa; tmp3.exponent = sqrtTmp.exponent; tmp3.sign = sqrtTmp.sign; };
|
||
tmp3.sqr();
|
||
tmp3.scalbn(-1);
|
||
tmp3.exp();
|
||
tmp5.mul(tmp3);
|
||
{ tmp3.sign=(byte)0; tmp3.exponent=0x40000001; tmp3.mantissa=0x50364c7fd89c1659L; }; // sqrt(2*pi)
|
||
tmp5.mul(tmp3);
|
||
// Z = Y-R/(1+R*Y/2)
|
||
{ this.mantissa = sqrtTmp.mantissa; this.exponent = sqrtTmp.exponent; this.sign = sqrtTmp.sign; };
|
||
mul(tmp5);
|
||
scalbn(-1);
|
||
add(ONE);
|
||
rdiv(tmp5);
|
||
neg();
|
||
add(sqrtTmp);
|
||
// calculate inverfc(x) = -invphi(x/2)/(sqrt(2))
|
||
mul(SQRT1_2);
|
||
if (sign>0)
|
||
neg();
|
||
}
|
||
//*************************************************************************
|
||
// Calendar conversions taken from
|
||
// http://www.fourmilab.ch/documents/calendar/
|
||
private static int floorDiv(int a, int b) {
|
||
if (a>=0)
|
||
return a/b;
|
||
return -((-a+b-1)/b);
|
||
}
|
||
private static int floorMod(int a, int b) {
|
||
if (a>=0)
|
||
return a%b;
|
||
return a+((-a+b-1)/b)*b;
|
||
}
|
||
private static boolean leap_gregorian(int year) {
|
||
return ((year % 4) == 0) &&
|
||
(!(((year % 100) == 0) && ((year % 400) != 0)));
|
||
}
|
||
// GREGORIAN_TO_JD -- Determine Julian day number from Gregorian
|
||
// calendar date -- Except that we use 1/1-0 as day 0
|
||
private static int gregorian_to_jd(int year, int month, int day) {
|
||
return ((366 - 1) +
|
||
(365 * (year - 1)) +
|
||
(floorDiv(year - 1, 4)) +
|
||
(-floorDiv(year - 1, 100)) +
|
||
(floorDiv(year - 1, 400)) +
|
||
((((367 * month) - 362) / 12) +
|
||
((month <= 2) ? 0 : (leap_gregorian(year) ? -1 : -2)) + day));
|
||
}
|
||
// JD_TO_GREGORIAN -- Calculate Gregorian calendar date from Julian
|
||
// day -- Except that we use 1/1-0 as day 0
|
||
private static int jd_to_gregorian(int jd) {
|
||
int wjd, depoch, quadricent, dqc, cent, dcent, quad, dquad,
|
||
yindex, year, yearday, leapadj, month, day;
|
||
wjd = jd;
|
||
depoch = wjd - 366;
|
||
quadricent = floorDiv(depoch, 146097);
|
||
dqc = floorMod(depoch, 146097);
|
||
cent = floorDiv(dqc, 36524);
|
||
dcent = floorMod(dqc, 36524);
|
||
quad = floorDiv(dcent, 1461);
|
||
dquad = floorMod(dcent, 1461);
|
||
yindex = floorDiv(dquad, 365);
|
||
year = (quadricent * 400) + (cent * 100) + (quad * 4) + yindex;
|
||
if (!((cent == 4) || (yindex == 4)))
|
||
year++;
|
||
yearday = wjd - gregorian_to_jd(year, 1, 1);
|
||
leapadj = ((wjd < gregorian_to_jd(year, 3, 1)) ? 0
|
||
: (leap_gregorian(year) ? 1 : 2));
|
||
month = floorDiv(((yearday + leapadj) * 12) + 373, 367);
|
||
day = (wjd - gregorian_to_jd(year, month, 1)) + 1;
|
||
return (year*100+month)*100+day;
|
||
}
|
||
/**
|
||
* Converts this <code>Real</code> from "hours" to "days, hours,
|
||
* minutes and seconds".
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>The format converted to is encoded into the digits of the
|
||
* number (in decimal form):
|
||
* "<code>DDDDhh.mmss</code>". Here "<code>DDDD</code>," is number
|
||
* of days, "<code>hh</code>" is hours (0-23), "<code>mm</code>" is
|
||
* minutes (0-59) and "<code>ss</code>" is seconds
|
||
* (0-59). Additional digits represent fractions of a second.
|
||
*
|
||
* <p>If the number of hours of the input is greater or equal to
|
||
* 8784 (number of hours in year <code>0</code>), the format
|
||
* converted to is instead "<code>YYYYMMDDhh.mmss</code>". Here
|
||
* "<code>YYYY</code>" is the number of years since the imaginary
|
||
* year <code>0</code> in the Gregorian calendar, extrapolated back
|
||
* from year 1582. "<code>MM</code>" is the month (1-12) and
|
||
* "<code>DD</code>" is the day of the month (1-31). See a thorough
|
||
* discussion of date calculations <a
|
||
* href="http://midp-calc.sourceforge.net/Calc.html#DateNote">here</a>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* ?
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 19
|
||
* </td></tr></table>
|
||
*/
|
||
public void toDHMS() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
boolean negative = (this.sign!=0);
|
||
abs();
|
||
int D,m;
|
||
long h;
|
||
h = toLong();
|
||
frac();
|
||
tmp1.assign(60);
|
||
mul(tmp1);
|
||
m = toInteger();
|
||
frac();
|
||
mul(tmp1);
|
||
// MAGIC ROUNDING: Check if we are 2**-16 sec short of a whole minute
|
||
// i.e. "seconds" > 59.999985
|
||
{ tmp2.mantissa = ONE.mantissa; tmp2.exponent = ONE.exponent; tmp2.sign = ONE.sign; };
|
||
tmp2.scalbn(-16);
|
||
add(tmp2);
|
||
if (this.compare(tmp1) >= 0) {
|
||
// Yes. So set zero secs instead and carry over to mins and hours
|
||
{ this.mantissa = ZERO.mantissa; this.exponent = ZERO.exponent; this.sign = ZERO.sign; };
|
||
m++;
|
||
if (m >= 60) {
|
||
m -= 60;
|
||
h++;
|
||
}
|
||
// Phew! That was close. From now on it is integer arithmetic...
|
||
} else {
|
||
// Nope. So try to undo the damage...
|
||
sub(tmp2);
|
||
}
|
||
D = (int)(h/24);
|
||
h %= 24;
|
||
if (D >= 366)
|
||
D = jd_to_gregorian(D);
|
||
add(m*100);
|
||
div(10000);
|
||
tmp1.assign(D*100L+h);
|
||
add(tmp1);
|
||
if (negative)
|
||
neg();
|
||
}
|
||
/**
|
||
* Converts this <code>Real</code> from "days, hours, minutes and
|
||
* seconds" to "hours".
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>The format converted from is encoded into the digits of the
|
||
* number (in decimal form):
|
||
* "<code>DDDDhh.mmss</code>". Here "<code>DDDD</code>" is number of
|
||
* days, "<code>hh</code>" is hours (0-23), "<code>mm</code>" is
|
||
* minutes (0-59) and "<code>ss</code>" is seconds
|
||
* (0-59). Additional digits represent fractions of a second.
|
||
*
|
||
* <p>If the number of days in the input is greater than or equal to
|
||
* 10000, the format converted from is instead
|
||
* "<code>YYYYMMDDhh.mmss</code>". Here "<code>YYYY</code>" is the
|
||
* number of years since the imaginary year <code>0</code> in the
|
||
* Gregorian calendar, extrapolated back from year
|
||
* 1582. "<code>MM</code>" is the month (1-12) and
|
||
* "<code>DD</code>" is the day of the month (1-31). If month or day
|
||
* is 0 it is treated as 1. See a thorough discussion of date
|
||
* calculations <a
|
||
* href="http://midp-calc.sourceforge.net/Calc.html#DateNote">here</a>.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* ?
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 19
|
||
* </td></tr></table>
|
||
*/
|
||
public void fromDHMS() {
|
||
if (!(this.exponent >= 0 && this.mantissa != 0))
|
||
return;
|
||
boolean negative = (this.sign!=0);
|
||
abs();
|
||
int Y,M,D,m;
|
||
long h;
|
||
h = toLong();
|
||
frac();
|
||
tmp1.assign(100);
|
||
mul(tmp1);
|
||
m = toInteger();
|
||
frac();
|
||
mul(tmp1);
|
||
// MAGIC ROUNDING: Check if we are 2**-10 second short of 100 seconds
|
||
// i.e. "seconds" > 99.999
|
||
{ tmp2.mantissa = ONE.mantissa; tmp2.exponent = ONE.exponent; tmp2.sign = ONE.sign; };
|
||
tmp2.scalbn(-10);
|
||
add(tmp2);
|
||
if (this.compare(tmp1) >= 0) {
|
||
// Yes. So set zero secs instead and carry over to mins and hours
|
||
{ this.mantissa = ZERO.mantissa; this.exponent = ZERO.exponent; this.sign = ZERO.sign; };
|
||
m++;
|
||
if (m >= 100) {
|
||
m -= 100;
|
||
h++;
|
||
}
|
||
// Phew! That was close. From now on it is integer arithmetic...
|
||
} else {
|
||
// Nope. So try to undo the damage...
|
||
sub(tmp2);
|
||
}
|
||
D = (int)(h/100);
|
||
h %= 100;
|
||
if (D>=10000) {
|
||
M = D/100;
|
||
D %= 100;
|
||
if (D==0) D=1;
|
||
Y = M/100;
|
||
M %= 100;
|
||
if (M==0) M=1;
|
||
D = gregorian_to_jd(Y,M,D);
|
||
}
|
||
add(m*60);
|
||
div(3600);
|
||
tmp1.assign(D*24L+h);
|
||
add(tmp1);
|
||
if (negative)
|
||
neg();
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> the current time. The time is
|
||
* encoded into the digits of the number (in decimal form), using the
|
||
* format "<code>hh.mmss</code>", where "<code>hh</code>" is hours,
|
||
* "<code>mm</code>" is minutes and "code>ss</code>" is seconds.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* <20> ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 8.9
|
||
* </td></tr></table>
|
||
*/
|
||
public void time() {
|
||
long now = System.currentTimeMillis();
|
||
int h,m,s;
|
||
now /= 1000;
|
||
s = (int)(now % 60);
|
||
now /= 60;
|
||
m = (int)(now % 60);
|
||
now /= 60;
|
||
h = (int)(now % 24);
|
||
assign((h*100+m)*100+s);
|
||
div(10000);
|
||
}
|
||
/**
|
||
* Assigns this <code>Real</code> the current date. The date is
|
||
* encoded into the digits of the number (in decimal form), using
|
||
* the format "<code>YYYYMMDD00</code>", where "<code>YYYY</code>"
|
||
* is the year, "<code>MM</code>" is the month (1-12) and
|
||
* "<code>DD</code>" is the day of the month (1-31). The
|
||
* "<code>00</code>" in this format is a sort of padding to make it
|
||
* compatible with the format used by {@link #toDHMS()} and {@link
|
||
* #fromDHMS()}.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <i>none</i>
|
||
* </td></tr><tr><td><i>Error bound:</i></td><td>
|
||
* 0 ULPs
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 30
|
||
* </td></tr></table>
|
||
*/
|
||
public void date() {
|
||
long now = System.currentTimeMillis();
|
||
now /= 86400000; // days
|
||
now *= 24; // hours
|
||
assign(now);
|
||
add(719528*24); // 1970-01-01 era
|
||
toDHMS();
|
||
}
|
||
//*************************************************************************
|
||
/**
|
||
* The seed of the first 64-bit CRC generator of the random
|
||
* routine. Set this value to control the generated sequence of random
|
||
* numbers. Should never be set to 0. See {@link #random()}.
|
||
* Initialized to mantissa of pi.
|
||
*/
|
||
public static long randSeedA = 0x6487ed5110b4611aL;
|
||
/**
|
||
* The seed of the second 64-bit CRC generator of the random
|
||
* routine. Set this value to control the generated sequence of random
|
||
* numbers. Should never be set to 0. See {@link #random()}.
|
||
* Initialized to mantissa of e.
|
||
*/
|
||
public static long randSeedB = 0x56fc2a2c515da54dL;
|
||
// 64 Bit CRC Generators
|
||
//
|
||
// The generators used here are not cryptographically secure, but
|
||
// two weak generators are combined into one strong generator by
|
||
// skipping bits from one generator whenever the other generator
|
||
// produces a 0-bit.
|
||
private static void advanceBit() {
|
||
randSeedA = (randSeedA<<1)^(randSeedA<0?0x1b:0);
|
||
randSeedB = (randSeedB<<1)^(randSeedB<0?0xb000000000000001L:0);
|
||
}
|
||
// Get next bits from the pseudo-random sequence
|
||
private static long nextBits(int bits) {
|
||
long answer = 0;
|
||
while (bits-- > 0) {
|
||
while (randSeedA >= 0)
|
||
advanceBit();
|
||
answer = (answer<<1) + (randSeedB < 0 ? 1 : 0);
|
||
advanceBit();
|
||
}
|
||
return answer;
|
||
}
|
||
/**
|
||
* Accumulate more randomness into the random number generator, to
|
||
* decrease the predictability of the output from {@link
|
||
* #random()}. The input should contain data with some form of
|
||
* inherent randomness e.g. System.currentTimeMillis().
|
||
*
|
||
* @param seed some extra randomness for the random number generator.
|
||
*/
|
||
public static void accumulateRandomness(long seed) {
|
||
randSeedA ^= seed & 0x5555555555555555L;
|
||
randSeedB ^= seed & 0xaaaaaaaaaaaaaaaaL;
|
||
nextBits(63);
|
||
}
|
||
/**
|
||
* Calculates a pseudorandom number in the range [0, 1).
|
||
* Replaces the contents of this <code>Real</code> with the result.
|
||
*
|
||
* <p>The algorithm used is believed to be cryptographically secure,
|
||
* combining two relatively weak 64-bit CRC generators into a strong
|
||
* generator by skipping bits from one generator whenever the other
|
||
* generator produces a 0-bit. The algorithm passes the <a
|
||
* href="http://www.fourmilab.ch/random/">ent</a> test.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this = Math.{@link Math#random() random}();</code>
|
||
* </td></tr><tr><td><i>Approximate error bound:</i></td><td>
|
||
* -
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 81
|
||
* </td></tr></table>
|
||
*/
|
||
public void random() {
|
||
sign = 0;
|
||
exponent = 0x3fffffff;
|
||
while (nextBits(1) == 0)
|
||
exponent--;
|
||
mantissa = 0x4000000000000000L+nextBits(62);
|
||
}
|
||
//*************************************************************************
|
||
private int digit(char a, int base, boolean twosComplement) {
|
||
int digit = -1;
|
||
if (a>='0' && a<='9')
|
||
digit = a-'0';
|
||
else if (a>='A' && a<='F')
|
||
digit = a-'A'+10;
|
||
if (digit >= base)
|
||
return -1;
|
||
if (twosComplement)
|
||
digit ^= base-1;
|
||
return digit;
|
||
}
|
||
private void shiftUp(int base) {
|
||
if (base==2)
|
||
scalbn(1);
|
||
else if (base==8)
|
||
scalbn(3);
|
||
else if (base==16)
|
||
scalbn(4);
|
||
else
|
||
mul10();
|
||
}
|
||
private void atof(String a, int base) {
|
||
makeZero();
|
||
int length = a.length();
|
||
int index = 0;
|
||
byte tmpSign = 0;
|
||
boolean compl = false;
|
||
while (index<length && a.charAt(index)==' ')
|
||
index++;
|
||
if (index<length && a.charAt(index)=='-') {
|
||
tmpSign=1;
|
||
index++;
|
||
} else if (index<length && a.charAt(index)=='+') {
|
||
index++;
|
||
} else if (index<length && a.charAt(index)=='/') {
|
||
// Input is twos complemented negative number
|
||
compl=true;
|
||
tmpSign=1;
|
||
index++;
|
||
}
|
||
int d;
|
||
while (index<length && (d=digit(a.charAt(index),base,compl))>=0) {
|
||
shiftUp(base);
|
||
add(d);
|
||
index++;
|
||
}
|
||
int exp=0;
|
||
if (index<length && (a.charAt(index)=='.' || a.charAt(index)==',')) {
|
||
index++;
|
||
while (index<length && (d=digit(a.charAt(index),base,compl))>=0) {
|
||
shiftUp(base);
|
||
add(d);
|
||
exp--;
|
||
index++;
|
||
}
|
||
}
|
||
if (compl)
|
||
add(ONE);
|
||
while (index<length && a.charAt(index)==' ')
|
||
index++;
|
||
if (index<length && (a.charAt(index)=='e' || a.charAt(index)=='E')) {
|
||
index++;
|
||
int exp2 = 0;
|
||
boolean expNeg = false;
|
||
if (index<length && a.charAt(index)=='-') {
|
||
expNeg = true;
|
||
index++;
|
||
} else if (index<length && a.charAt(index)=='+') {
|
||
index++;
|
||
}
|
||
while (index<length && a.charAt(index)>='0' &&
|
||
a.charAt(index)<='9')
|
||
{
|
||
// This takes care of overflows and makes inf or 0
|
||
if (exp2 < 400000000)
|
||
exp2 = exp2*10 + a.charAt(index) - '0';
|
||
index++;
|
||
}
|
||
if (expNeg)
|
||
exp2 = -exp2;
|
||
exp += exp2;
|
||
}
|
||
if (base==2)
|
||
scalbn(exp);
|
||
else if (base==8)
|
||
scalbn(exp*3);
|
||
else if (base==16)
|
||
scalbn(exp*4);
|
||
else {
|
||
if (exp > 300000000 || exp < -300000000) {
|
||
// Kludge to be able to enter very large and very small
|
||
// numbers without causing over/underflows
|
||
{ tmp1.mantissa = TEN.mantissa; tmp1.exponent = TEN.exponent; tmp1.sign = TEN.sign; };
|
||
if (exp<0) {
|
||
tmp1.pow(-exp/2);
|
||
div(tmp1);
|
||
} else {
|
||
tmp1.pow(exp/2);
|
||
mul(tmp1);
|
||
}
|
||
exp -= exp/2;
|
||
}
|
||
{ tmp1.mantissa = TEN.mantissa; tmp1.exponent = TEN.exponent; tmp1.sign = TEN.sign; };
|
||
if (exp<0) {
|
||
tmp1.pow(-exp);
|
||
div(tmp1);
|
||
} else if (exp>0) {
|
||
tmp1.pow(exp);
|
||
mul(tmp1);
|
||
}
|
||
}
|
||
sign = tmpSign;
|
||
}
|
||
//*************************************************************************
|
||
private void normalizeDigits(byte[] digits, int nDigits, int base) {
|
||
byte carry = 0;
|
||
boolean isZero = true;
|
||
for (int i=nDigits-1; i>=0; i--) {
|
||
if (digits[i] != 0)
|
||
isZero = false;
|
||
digits[i] += carry;
|
||
carry = 0;
|
||
if (digits[i] >= base) {
|
||
digits[i] -= base;
|
||
carry = 1;
|
||
}
|
||
}
|
||
if (isZero) {
|
||
exponent = 0;
|
||
return;
|
||
}
|
||
if (carry != 0) {
|
||
if (digits[nDigits-1] >= base/2)
|
||
digits[nDigits-2] ++; // Rounding, may be inaccurate
|
||
System.arraycopy(digits, 0, digits, 1, nDigits-1);
|
||
digits[0] = carry;
|
||
exponent++;
|
||
if (digits[nDigits-1] >= base) {
|
||
// Oh, no, not again!
|
||
normalizeDigits(digits, nDigits, base);
|
||
}
|
||
}
|
||
while (digits[0] == 0) {
|
||
System.arraycopy(digits, 1, digits, 0, nDigits-1);
|
||
digits[nDigits-1] = 0;
|
||
exponent--;
|
||
}
|
||
}
|
||
private int getDigits(byte[] digits, int base) {
|
||
if (base == 10)
|
||
{
|
||
{ tmp1.mantissa = this.mantissa; tmp1.exponent = this.exponent; tmp1.sign = this.sign; };
|
||
tmp1.abs();
|
||
{ tmp2.mantissa = tmp1.mantissa; tmp2.exponent = tmp1.exponent; tmp2.sign = tmp1.sign; };
|
||
int exp = exponent = tmp1.lowPow10();
|
||
exp -= 18;
|
||
boolean exp_neg = exp <= 0;
|
||
exp = Math.abs(exp);
|
||
if (exp > 300000000) {
|
||
// Kludge to be able to print very large and very small numbers
|
||
// without causing over/underflows
|
||
{ tmp1.mantissa = TEN.mantissa; tmp1.exponent = TEN.exponent; tmp1.sign = TEN.sign; };
|
||
tmp1.pow(exp/2); // So, divide twice by not-so-extreme numbers
|
||
if (exp_neg)
|
||
tmp2.mul(tmp1);
|
||
else
|
||
tmp2.div(tmp1);
|
||
{ tmp1.mantissa = TEN.mantissa; tmp1.exponent = TEN.exponent; tmp1.sign = TEN.sign; };
|
||
tmp1.pow(exp-(exp/2));
|
||
} else {
|
||
{ tmp1.mantissa = TEN.mantissa; tmp1.exponent = TEN.exponent; tmp1.sign = TEN.sign; };
|
||
tmp1.pow(exp);
|
||
}
|
||
if (exp_neg)
|
||
tmp2.mul(tmp1);
|
||
else
|
||
tmp2.div(tmp1);
|
||
long a;
|
||
if (tmp2.exponent > 0x4000003e) {
|
||
tmp2.exponent--;
|
||
tmp2.round();
|
||
a = tmp2.toLong();
|
||
if (a >= 5000000000000000000L) { // Rounding up gave 20 digits
|
||
exponent++;
|
||
a /= 5;
|
||
digits[18] = (byte)(a%10);
|
||
a /= 10;
|
||
} else {
|
||
digits[18] = (byte)((a%5)*2);
|
||
a /= 5;
|
||
}
|
||
} else {
|
||
tmp2.round();
|
||
a = tmp2.toLong();
|
||
digits[18] = (byte)(a%10);
|
||
a /= 10;
|
||
}
|
||
for (int i=17; i>=0; i--) {
|
||
digits[i] = (byte)(a%10);
|
||
a /= 10;
|
||
}
|
||
digits[19] = 0;
|
||
return 19;
|
||
}
|
||
int accurateBits = 64;
|
||
int bitsPerDigit = base == 2 ? 1 : base == 8 ? 3 : 4;
|
||
if ((this.exponent == 0 && this.mantissa == 0)) {
|
||
sign = 0; // Two's complement cannot display -0
|
||
} else {
|
||
if ((this.sign!=0)) {
|
||
mantissa = -mantissa;
|
||
if (((mantissa >> 62)&3) == 3) {
|
||
mantissa <<= 1;
|
||
exponent--;
|
||
accurateBits--; // ?
|
||
}
|
||
}
|
||
exponent -= 0x40000000-1;
|
||
int shift = bitsPerDigit-1 -
|
||
floorMod(exponent, bitsPerDigit);
|
||
exponent = floorDiv(exponent, bitsPerDigit);
|
||
if (shift == bitsPerDigit-1) {
|
||
// More accurate to shift up instead
|
||
mantissa <<= 1;
|
||
exponent--;
|
||
accurateBits--;
|
||
}
|
||
else if (shift>0) {
|
||
mantissa = (mantissa+(1L<<(shift-1)))>>>shift;
|
||
if ((this.sign!=0)) {
|
||
// Need to fill in some 1's at the top
|
||
// (">>", not ">>>")
|
||
mantissa |= 0x8000000000000000L>>(shift-1);
|
||
}
|
||
}
|
||
}
|
||
int accurateDigits = (accurateBits+bitsPerDigit-1)/bitsPerDigit;
|
||
for (int i=0; i<accurateDigits; i++) {
|
||
digits[i] = (byte)(mantissa>>>(64-bitsPerDigit));
|
||
mantissa <<= bitsPerDigit;
|
||
}
|
||
digits[accurateDigits] = 0;
|
||
return accurateDigits;
|
||
}
|
||
private boolean carryWhenRounded(byte[] digits, int nDigits, int base) {
|
||
if (digits[nDigits] < base/2)
|
||
return false; // no rounding up, no carry
|
||
for (int i=nDigits-1; i>=0; i--)
|
||
if (digits[i] < base-1)
|
||
return false; // carry would not propagate
|
||
exponent++;
|
||
digits[0] = 1;
|
||
for (int i=1; i<digits.length; i++)
|
||
digits[i] = 0;
|
||
return true;
|
||
}
|
||
private void round(byte[] digits, int nDigits, int base) {
|
||
if (digits[nDigits] >= base/2) {
|
||
digits[nDigits-1]++;
|
||
normalizeDigits(digits, nDigits, base);
|
||
}
|
||
}
|
||
/**
|
||
* The number format used to convert <code>Real</code> values to
|
||
* <code>String</code> using {@link Real#toString(Real.NumberFormat)
|
||
* Real.toString()}. The default number format uses base-10, maximum
|
||
* precision, removal of trailing zeros and '.' as radix point.
|
||
*
|
||
* <p>Note that the fields of <code>NumberFormat</code> are not
|
||
* protected in any way, the user is responsible for setting the
|
||
* correct values to get a correct result.
|
||
*/
|
||
public static class NumberFormat
|
||
{
|
||
/**
|
||
* The number base of the conversion. The default value is 10,
|
||
* valid options are 2, 8, 10 and 16. See {@link Real#and(Real)
|
||
* Real.and()} for an explanation of the interpretation of a
|
||
* <code>Real</code> in base 2, 8 and 16.
|
||
*
|
||
* <p>Negative numbers output in base-2, base-8 and base-16 are
|
||
* shown in two's complement form. This form guarantees that a
|
||
* negative number starts with at least one digit that is the
|
||
* maximum digit for that base, i.e. '1', '7', and 'F',
|
||
* respectively. A positive number is guaranteed to start with at
|
||
* least one '0'. Both positive and negative numbers are extended
|
||
* to the left using this digit, until {@link #maxwidth} is
|
||
* reached.
|
||
*/
|
||
public int base = 10;
|
||
/**
|
||
* Maximum width of the converted string. The default value is 30.
|
||
* If the conversion of a <code>Real</code> with a given {@link
|
||
* #precision} would produce a string wider than
|
||
* <code>maxwidth</code>, <code>precision</code> is reduced until
|
||
* the number fits within the given width. If
|
||
* <code>maxwidth</code> is too small to hold the number with its
|
||
* sign, exponent and a <code>precision</code> of 1 digit, the
|
||
* string may become wider than <code>maxwidth</code>.
|
||
*
|
||
* <p>If <code>align</code> is set to anything but
|
||
* <code>ALIGN_NONE</code> and the converted string is shorter
|
||
* than <code>maxwidth</code>, the resulting string is padded with
|
||
* spaces to the specified width according to the alignment.
|
||
*/
|
||
public int maxwidth = 30;
|
||
/**
|
||
* The precision, or number of digits after the radix point in the
|
||
* converted string when using the <i>FIX</i>, <i>SCI</i> or
|
||
* <i>ENG</i> format (see {@link #fse}). The default value is 16,
|
||
* valid values are 0-16 for base-10 and base-16 conversion, 0-21
|
||
* for base-8 conversion, and 0-63 for base-2 conversion.
|
||
*
|
||
* <p>The <code>precision</code> may be reduced to make the number
|
||
* fit within {@link #maxwidth}. The <code>precision</code> is
|
||
* also reduced if it is set higher than the actual numbers of
|
||
* significant digits in a <code>Real</code>. When
|
||
* <code>fse</code> is set to <code>FSE_NONE</code>, i.e. "normal"
|
||
* output, the precision is always at maximum, but trailing zeros
|
||
* are removed.
|
||
*/
|
||
public int precision = 16;
|
||
/**
|
||
* The special output formats <i>FIX</i>, <i>SCI</i> or <i>ENG</i>
|
||
* are enabled with this field. The default value is
|
||
* <code>FSE_NONE</code>. Valid options are listed below.
|
||
*
|
||
* <p>Numbers are output in one of two main forms, according to
|
||
* this setting. The normal form has an optional sign, one or more
|
||
* digits before the radix point, and zero or more digits after the
|
||
* radix point, for example like this:<br>
|
||
* <code> 3.14159</code><br>
|
||
* The exponent form is like the normal form, followed by an
|
||
* exponent marker 'e', an optional sign and one or more exponent
|
||
* digits, for example like this:<br>
|
||
* <code> -3.4753e-13</code>
|
||
*
|
||
* <p><dl>
|
||
* <dt>{@link #FSE_NONE}
|
||
* <dd>Normal output. Numbers are output with maximum precision,
|
||
* trailing zeros are removed. The format is changed to
|
||
* exponent form if the number is larger than the number of
|
||
* significant digits allows, or if the resulting string would
|
||
* exceed <code>maxwidth</code> without the exponent form.
|
||
*
|
||
* <dt>{@link #FSE_FIX}
|
||
* <dd>Like normal output, but the numbers are output with a
|
||
* fixed number of digits after the radix point, according to
|
||
* {@link #precision}. Trailing zeros are not removed.
|
||
*
|
||
* <dt>{@link #FSE_SCI}
|
||
* <dd>The numbers are always output in the exponent form, with
|
||
* one digit before the radix point, and a fixed number of
|
||
* digits after the radix point, according to
|
||
* <code>precision</code>. Trailing zeros are not removed.
|
||
*
|
||
* <dt>{@link #FSE_ENG}
|
||
* <dd>Like the <i>SCI</i> format, but the output shows one to
|
||
* three digits before the radix point, so that the exponent is
|
||
* always divisible by 3.
|
||
* </dl>
|
||
*/
|
||
public int fse = FSE_NONE;
|
||
/**
|
||
* The character used as the radix point. The default value is
|
||
* <code>'.'</code>. Theoretcally any character that does not
|
||
* otherwise occur in the output can be used, such as
|
||
* <code>','</code>.
|
||
*
|
||
* <p>Note that setting this to anything but <code>'.'</code> and
|
||
* <code>','</code> is not supported by any conversion method from
|
||
* <code>String</code> back to <code>Real</code>.
|
||
*/
|
||
public char point = '.';
|
||
/**
|
||
* Set to <code>true</code> to remove the radix point if this is
|
||
* the last character in the converted string. This is the
|
||
* default.
|
||
*/
|
||
public boolean removePoint = true;
|
||
/**
|
||
* The character used as the thousands separator. The default
|
||
* value is the character code <code>0</code>, which disables
|
||
* thousands-separation. Theoretcally any character that does not
|
||
* otherwise occur in the output can be used, such as
|
||
* <code>','</code> or <code>' '</code>.
|
||
*
|
||
* <p>When <code>thousand!=0</code>, this character is inserted
|
||
* between every 3rd digit to the left of the radix point in
|
||
* base-10 conversion. In base-16 conversion, the separator is
|
||
* inserted between every 4th digit, and in base-2 conversion the
|
||
* separator is inserted between every 8th digit. In base-8
|
||
* conversion, no separator is ever inserted.
|
||
*
|
||
* <p>Note that tousands separators are not supported by any
|
||
* conversion method from <code>String</code> back to
|
||
* <code>Real</code>, so use of a thousands separator is meant
|
||
* only for the presentation of numbers.
|
||
*/
|
||
public char thousand = 0;
|
||
/**
|
||
* The alignment of the output string within a field of {@link
|
||
* #maxwidth} characters. The default value is
|
||
* <code>ALIGN_NONE</code>. Valid options are defined as follows:
|
||
*
|
||
* <p><dl>
|
||
* <dt>{@link #ALIGN_NONE}
|
||
* <dd>The resulting string is not padded with spaces.
|
||
*
|
||
* <dt>{@link #ALIGN_LEFT}
|
||
* <dd>The resulting string is padded with spaces on the right side
|
||
* until a width of <code>maxwidth</code> is reached, making the
|
||
* number left-aligned within the field.
|
||
*
|
||
* <dt>{@link #ALIGN_RIGHT}
|
||
* <dd>The resulting string is padded with spaces on the left side
|
||
* until a width of <code>maxwidth</code> is reached, making the
|
||
* number right-aligned within the field.
|
||
*
|
||
* <dt>{@link #ALIGN_CENTER}
|
||
* <dd>The resulting string is padded with spaces on both sides
|
||
* until a width of <code>maxwidth</code> is reached, making the
|
||
* number center-aligned within the field.
|
||
* </dl>
|
||
*/
|
||
public int align = ALIGN_NONE;
|
||
/** Normal output {@linkplain #fse format} */
|
||
public static final int FSE_NONE = 0;
|
||
/** <i>FIX</i> output {@linkplain #fse format} */
|
||
public static final int FSE_FIX = 1;
|
||
/** <i>SCI</i> output {@linkplain #fse format} */
|
||
public static final int FSE_SCI = 2;
|
||
/** <i>ENG</i> output {@linkplain #fse format} */
|
||
public static final int FSE_ENG = 3;
|
||
/** No {@linkplain #align alignment} */
|
||
public static final int ALIGN_NONE = 0;
|
||
/** Left {@linkplain #align alignment} */
|
||
public static final int ALIGN_LEFT = 1;
|
||
/** Right {@linkplain #align alignment} */
|
||
public static final int ALIGN_RIGHT = 2;
|
||
/** Center {@linkplain #align alignment} */
|
||
public static final int ALIGN_CENTER = 3;
|
||
}
|
||
private String align(StringBuffer s, NumberFormat format) {
|
||
if (format.align == NumberFormat.ALIGN_LEFT) {
|
||
while (s.length()<format.maxwidth)
|
||
s.append(' ');
|
||
} else if (format.align == NumberFormat.ALIGN_RIGHT) {
|
||
while (s.length()<format.maxwidth)
|
||
s.insert(0,' ');
|
||
} else if (format.align == NumberFormat.ALIGN_CENTER) {
|
||
while (s.length()<format.maxwidth) {
|
||
s.append(' ');
|
||
if (s.length()<format.maxwidth)
|
||
s.insert(0,' ');
|
||
}
|
||
}
|
||
return s.toString();
|
||
}
|
||
private static byte[] ftoaDigits = new byte[65];
|
||
private static StringBuffer ftoaBuf = new StringBuffer(40);
|
||
private static StringBuffer ftoaExp = new StringBuffer(15);
|
||
/**
|
||
* This string holds the only valid characters to use in hexadecimal
|
||
* numbers. Equals <code>"0123456789ABCDEF"</code>.
|
||
* See {@link #assign(String,int)}.
|
||
*/
|
||
public static final String hexChar = "0123456789ABCDEF";
|
||
private String ftoa(NumberFormat format) {
|
||
ftoaBuf.setLength(0);
|
||
if ((this.exponent < 0 && this.mantissa != 0)) {
|
||
ftoaBuf.append("nan");
|
||
return align(ftoaBuf,format);
|
||
}
|
||
if ((this.exponent < 0 && this.mantissa == 0)) {
|
||
ftoaBuf.append((this.sign!=0) ? "-inf":"inf");
|
||
return align(ftoaBuf,format);
|
||
}
|
||
int digitsPerThousand;
|
||
switch (format.base) {
|
||
case 2:
|
||
digitsPerThousand = 8;
|
||
break;
|
||
case 8:
|
||
digitsPerThousand = 1000; // Disable thousands separator
|
||
break;
|
||
case 16:
|
||
digitsPerThousand = 4;
|
||
break;
|
||
case 10:
|
||
default:
|
||
digitsPerThousand = 3;
|
||
break;
|
||
}
|
||
if (format.thousand == 0)
|
||
digitsPerThousand = 1000; // Disable thousands separator
|
||
{ tmp4.mantissa = this.mantissa; tmp4.exponent = this.exponent; tmp4.sign = this.sign; };
|
||
int accurateDigits = tmp4.getDigits(ftoaDigits, format.base);
|
||
if (format.base == 10 && (exponent > 0x4000003e || !isIntegral()))
|
||
accurateDigits = 16; // Only display 16 digits for non-integers
|
||
int precision;
|
||
int pointPos = 0;
|
||
do
|
||
{
|
||
int width = format.maxwidth-1; // subtract 1 for decimal point
|
||
int prefix = 0;
|
||
if (format.base != 10)
|
||
prefix = 1; // want room for at least one "0" or "f/7/1"
|
||
else if ((tmp4.sign!=0))
|
||
width--; // subtract 1 for sign
|
||
boolean useExp = false;
|
||
switch (format.fse) {
|
||
case NumberFormat.FSE_SCI:
|
||
precision = format.precision+1;
|
||
useExp = true;
|
||
break;
|
||
case NumberFormat.FSE_ENG:
|
||
pointPos = floorMod(tmp4.exponent,3);
|
||
precision = format.precision+1+pointPos;
|
||
useExp = true;
|
||
break;
|
||
case NumberFormat.FSE_FIX:
|
||
case NumberFormat.FSE_NONE:
|
||
default:
|
||
precision = 1000;
|
||
if (format.fse == NumberFormat.FSE_FIX)
|
||
precision = format.precision+1;
|
||
if (tmp4.exponent+1 >
|
||
width-(tmp4.exponent+prefix)/digitsPerThousand-prefix+
|
||
(format.removePoint ? 1:0) ||
|
||
tmp4.exponent+1 > accurateDigits ||
|
||
-tmp4.exponent >= width ||
|
||
-tmp4.exponent >= precision)
|
||
{
|
||
useExp = true;
|
||
} else {
|
||
pointPos = tmp4.exponent;
|
||
precision += tmp4.exponent;
|
||
if (tmp4.exponent > 0)
|
||
width -= (tmp4.exponent+prefix)/digitsPerThousand;
|
||
if (format.removePoint && tmp4.exponent==width-prefix){
|
||
// Add 1 for the decimal point that will be removed
|
||
width++;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
if (prefix!=0 && pointPos>=0)
|
||
width -= prefix;
|
||
ftoaExp.setLength(0);
|
||
if (useExp) {
|
||
ftoaExp.append('e');
|
||
ftoaExp.append(tmp4.exponent-pointPos);
|
||
width -= ftoaExp.length();
|
||
}
|
||
if (precision > accurateDigits)
|
||
precision = accurateDigits;
|
||
if (precision > width)
|
||
precision = width;
|
||
if (precision > width+pointPos) // In case of negative pointPos
|
||
precision = width+pointPos;
|
||
if (precision <= 0)
|
||
precision = 1;
|
||
}
|
||
while (tmp4.carryWhenRounded(ftoaDigits,precision,format.base));
|
||
tmp4.round(ftoaDigits,precision,format.base);
|
||
// Start generating the string. First the sign
|
||
if ((tmp4.sign!=0) && format.base == 10)
|
||
ftoaBuf.append('-');
|
||
// Save pointPos for hex/oct/bin prefixing with thousands-sep
|
||
int pointPos2 = pointPos < 0 ? 0 : pointPos;
|
||
// Add leading zeros (or f/7/1)
|
||
char prefixChar = (format.base==10 || (tmp4.sign==0)) ? '0' :
|
||
hexChar.charAt(format.base-1);
|
||
if (pointPos < 0) {
|
||
ftoaBuf.append(prefixChar);
|
||
ftoaBuf.append(format.point);
|
||
while (pointPos < -1) {
|
||
ftoaBuf.append(prefixChar);
|
||
pointPos++;
|
||
}
|
||
}
|
||
// Add fractional part
|
||
for (int i=0; i<precision; i++) {
|
||
ftoaBuf.append(hexChar.charAt(ftoaDigits[i]));
|
||
if (pointPos>0 && pointPos%digitsPerThousand==0)
|
||
ftoaBuf.append(format.thousand);
|
||
if (pointPos == 0)
|
||
ftoaBuf.append(format.point);
|
||
pointPos--;
|
||
}
|
||
if (format.fse == NumberFormat.FSE_NONE) {
|
||
// Remove trailing zeros
|
||
while (ftoaBuf.charAt(ftoaBuf.length()-1) == '0')
|
||
ftoaBuf.setLength(ftoaBuf.length()-1);
|
||
}
|
||
if (format.removePoint) {
|
||
// Remove trailing point
|
||
if (ftoaBuf.charAt(ftoaBuf.length()-1) == format.point)
|
||
ftoaBuf.setLength(ftoaBuf.length()-1);
|
||
}
|
||
// Add exponent
|
||
ftoaBuf.append(ftoaExp.toString());
|
||
// In case hex/oct/bin number, prefix with 0's or f/7/1's
|
||
if (format.base!=10) {
|
||
while (ftoaBuf.length()<format.maxwidth) {
|
||
pointPos2++;
|
||
if (pointPos2>0 && pointPos2%digitsPerThousand==0)
|
||
ftoaBuf.insert(0,format.thousand);
|
||
if (ftoaBuf.length()<format.maxwidth)
|
||
ftoaBuf.insert(0,prefixChar);
|
||
}
|
||
if (ftoaBuf.charAt(0) == format.thousand)
|
||
ftoaBuf.deleteCharAt(0);
|
||
}
|
||
return align(ftoaBuf,format);
|
||
}
|
||
private static NumberFormat tmpFormat = new NumberFormat();
|
||
/**
|
||
* Converts this <code>Real</code> to a <code>String</code> using
|
||
* the default <code>NumberFormat</code>.
|
||
*
|
||
* <p>See {@link Real.NumberFormat NumberFormat} for a description
|
||
* of the default way that numbers are formatted.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td><td>
|
||
* <code>this.toString()
|
||
* </td></tr><tr><td><i>
|
||
* Execution time relative to add:
|
||
* </i></td><td>
|
||
* 130
|
||
* </td></tr></table>
|
||
*
|
||
* @return a <code>String</code> representation of this <code>Real</code>.
|
||
*/
|
||
public String toString() {
|
||
tmpFormat.base = 10;
|
||
return ftoa(tmpFormat);
|
||
}
|
||
/**
|
||
* Converts this <code>Real</code> to a <code>String</code> using
|
||
* the default <code>NumberFormat</code> with <code>base</code> set
|
||
* according to the argument.
|
||
*
|
||
* <p>See {@link Real.NumberFormat NumberFormat} for a description
|
||
* of the default way that numbers are formatted.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td>
|
||
* <td colspan="2">
|
||
* <code>this.toString() // Works only for base-10</code>
|
||
* </td></tr><tr><td rowspan="4" valign="top"><i>
|
||
* Execution time relative to add: </i>
|
||
* </td><td width="1%">base-2</td><td>
|
||
* 120
|
||
* </td></tr><tr><td>base-8</td><td>
|
||
* 110
|
||
* </td></tr><tr><td>base-10</td><td>
|
||
* 130
|
||
* </td></tr><tr><td>base-16 </td><td>
|
||
* 120
|
||
* </td></tr></table>
|
||
*
|
||
* @param base the base for the conversion. Valid base values are
|
||
* 2, 8, 10 and 16.
|
||
* @return a <code>String</code> representation of this <code>Real</code>.
|
||
*/
|
||
public String toString(int base) {
|
||
tmpFormat.base = base;
|
||
return ftoa(tmpFormat);
|
||
}
|
||
/**
|
||
* Converts this <code>Real</code> to a <code>String</code> using
|
||
* the given <code>NumberFormat</code>.
|
||
*
|
||
* <p>See {@link Real.NumberFormat NumberFormat} for a description of the
|
||
* various ways that numbers may be formatted.
|
||
*
|
||
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0"
|
||
* bgcolor="#e8d0ff"><tr><td width="1%"><i>
|
||
* Equivalent </i><code>double</code><i> code:</i></td>
|
||
* <td colspan="2">
|
||
* <code>String.format("%...g",this); // Works only for base-10</code>
|
||
* </td></tr><tr><td rowspan="4" valign="top"><i>
|
||
* Execution time relative to add: </i>
|
||
* </td><td width="1%">base-2</td><td>
|
||
* 120
|
||
* </td></tr><tr><td>base-8</td><td>
|
||
* 110
|
||
* </td></tr><tr><td>base-10</td><td>
|
||
* 130
|
||
* </td></tr><tr><td>base-16 </td><td>
|
||
* 120
|
||
* </td></tr></table>
|
||
*
|
||
* @param format the number format to use in the conversion.
|
||
* @return a <code>String</code> representation of this <code>Real</code>.
|
||
*/
|
||
public String toString(NumberFormat format) {
|
||
return ftoa(format);
|
||
}
|
||
}
|